
B.Sc. [Computer Science]
VI - Semester

130 64

Directorate of Distance Education

LAB: VISUAL BASIC
PROGRAMMING

ALAGAPPA UNIVERSITY
[Accredited with ‘A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

(A State University Established by the Government of Tamil Nadu)

KARAIKUDI – 630 003

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or
hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording
or by any information storage or retrieval system, without prior written permission from the Alagappa
University, Karaikudi, Tamil Nadu.

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Alagappa University, Publisher and its Authors shall in no event be liable for
any errors, omissions or damages arising out of use of this information and specifically disclaim any
implied warranties or merchantability or fitness for any particular use.

Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT. LTD.
E-28, Sector-8, Noida - 201301 (UP)
Phone: 0120-4078900  Fax: 0120-4078999
Regd. Office: A-27, 2nd Floor, Mohan Co-operative Industrial Estate, New Delhi 1100 44
 Website: www.vikaspublishing.com  Email: helpline@vikaspublishing.com

Work Order No.AU/DDE/DE12-27/Preparation and Printing of Course Materials/2020 Dated 12.08.2020 Copies - 500

"The copyright shall be vested with Alagappa University"

Author

Dr. Preety Khatri, Assistant Professor-SOIT IMS, Noida

LAB: VISUAL BASIC PROGRAMMING

1. Building Simple Applications
2. Working with Intrinsic Controls, Control Arrays
3. Application with Multiple Forms
4. Application with Dialogs
5. Application with Menus
6. Application using Data Controls
7. Application using Common Dialogs
8. Drag and Drop Events
9. Database Management

10. Creating ActiveX Controls
11. Database Object (DAO) and Properties
12. Active Data Objects (ADO) and OLE DB
13. Connecting to the Database, Retrieving a Record Set, Creating a Query Dynamically, Using a Parameterized

Query, Using Action Queries - Adding Records, Editing Records, Closing the Database Connection
14. Simple Application Development

(i) Library Information System
(ii) Students Mark Sheet Processing
(iii) Telephone Directory Maintenance
(iv) Gas Booking and Delivering
(v) Electricity Bill Processing
(vi) Bank Transaction
(vii) Pay Roll Processing
(viii) Personal Information System

(ix) Question Database and Conducting Quiz
(x) Personal Diary

INTRODUCTION

Visual Basic (VB) is a third-generation event-driven programming language from
Microsoft known for its Component Object Model (COM) programming model
first released in 1991 and declared legacy during 2008. Microsoft intended Visual
Basic to be relatively easy to learn and use. Visual Basic was derived from BASIC
and enables the Rapid Application Development (RAD) of Graphical User Interface
(GUI) applications, access to databases using Data Access Objects, Remote Data
Objects, or ActiveX Data Objects, and creation of ActiveX controls and objects.

A programmer can create an application using the components provided by
the Visual Basic program itself. Programs written in Visual Basic can also make
use of the Windows API, which requires external functions declarations.

This lab manual, Visual Basic Programming, contains several programs
based on Visual Basic (VB) which includes building simple applications, working
with intrinsic controls, control arrays, application with multiple forms, dialogs,
menus, application using data controls, common dialogs, drag and drop events,
database management, creating ActiveX controls, Database Object (DAO) and
properties, Active Data Objects (ADO) and OLE DB, connecting to the database,
retrieving a record set, creating a query dynamically, parameterized query, action
queries, simple application development, such as library information system, students
mark sheet processing, telephone directory maintenance, gas booking and
delivering, electricity bill processing, bank transaction, pay roll processing, personal
information system, etc.

In addition, it will help students in coding and debugging their Visual Basic
(VB) programs. The manual provides all logical, mathematical and conceptual
programs that can help to write programs easily. These exercises shall be taken as
the base reference during lab activities for students.

NOTES

Self-Instructional
Material

NOTES

Self-Instructional
Material 1

Lab: Visual Basic
ProgrammingBLOCK 1

This block will cover the following topics:

1. Introduction of VB and building simple applications.

2. Create, save and open the project.

3. Work with intrinsic controls and control arrays.

Visual Basic

Visual Basic (or VB) is a programming language that runs on the .NET framework
and developed by Microsoft. It is a third generation event-driven programming
language known for its Component Object Model (COM) programming model.
It can be used to build Windows applications, web applications and Windows
phone applications. Programs in VB will only run on a Windows operating system.
It is easy to learn and powerful.

Building Simple Applications

Following are the steps for building new application in Visual Basic.

Step 1: Download Visual Basic

You can download Visual Basic from Microsoft .NET (Visual Studio).

Step 2: Creating your New Project

Choose Standard EXE to enter VB integrated development environment in the
New Project Dialog. In the VB IDE, a default form with the name Form1 will
appear. Next, double click on Form1 to bring up the source code window for
Form1, as shown in screenshot given below.

Now, follow the steps given below:

1. Open Visual Studio.

2. Choose Create a new project on the start Window.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
2 Material

3. Enter or type console in the search box on the Create a new project Window.
After that select Visual Basic from the Language list, and then choose
Windows from the Platform list.

After selecting language and platform filters, choose the Console App (.NET
Core) template, and then select Next.

Type or enter WhatIsYourName in the Project name box in the Configure
your new project window and then select Create.

Step 3: Creating Your First Application

Visual Studio creates a simple “Hello World” application for you on selecting
Visual Basic project template and name of project. WriteLine method is called
to display the literal string “Hello World!” in the console window.

NOTES

Self-Instructional
Material 3

Lab: Visual Basic
Programming

Now, add some code to pause the application and requesting for the user input.
Console.Write(“Press any key to continue...”)

Console.ReadKey(true)

Note: Select Build  Build Solution on the menu bar.

It will compile the program in intermediate language (IL) that is converted by Just-
In-Time (JIT) compiler into binary code.

Step 4: Save and Test

Run the program in Debug mode.

Press any key to close the console window.

Working with Intrinsic Controls

Intrinsic controls are the basic set of twenty controls in the Toolbox. These controls
exist within the Visual Basic .exe file. Intrinsic controls do not have to add to
Toolbox. They can not be removed from the Toolbox. They are available during
the use of VB and you can access them from the Toolbox and lists the intrinsic
controls during design time.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
4 Material

Table 1.1 Intrinsic Controls and their Description

S.
NO.

Control Prefix Description

1 Label Ibl Displays text on a form
2 Frame fra Serves as a container for other controls
3 CheckBox chk Enables users to select or deselect an option
4 ComboBox Cbo Allows users to select from a list of items or add a new value
5 HscrollBar hsb Allows users to scroll horizontally through a list of data in another

control
6 Timer tmr Lets your program perform actions in real time, without user interaction
7 DirListBox dir Enables users to select a directory or folder
8 Shape shp Displays a shape on a form
9 Image img Displays graphics (images) on a form but can't be a container
10 OLE Container ole Enables you to add the functionality of another Control program to your

program
11 PictureBox pic Displays graphics (images) on a form and can serve as a container
12 TextBox txt Can be used to display text but also enables users to enter or edit new or

existing text
13 CommandButton cmd Enables users to initiate actions
14 OptionButton opt Lets users select one choice from a group; must be used in groups of two

or more
15 ListBox lst Enables users to select from a list of items
16 VscrollBar vsb Enables users to scroll vertically through a list of data in another control
17 DriveListBox drv Lets users select a disk drive
18 FileListBox fil Lets users select a file
19 Line lin Displays a line on a form
20 Data dat Lets your program connect to a database

Control Arrays

A control array is a group of controls having the same name type and event
procedures. Control arrays uses fewer resources in comparison to adding multiple
control of same type at design time. They can be created at design time only. You
can create the control array using the any of the three methods given below.

1. You can create a control array with only one element using a control and
assigning that a numeric, non-negative value to its Index property.

2. You create two controls of the same class with an identical Name property.
VB display a dialog box warning that there is already a control having same
name and asks to create another control array. Click on the Yes button.

3. Select a control on the form and copy it to the clipboard, and paste a new
instance of the control having the same Name property as the original one.
Visual Basic shows the warning as in method second.

Control arrays are one of the most interesting features of the VB that adds
flexibility to your programs. All controls in a control array have the same set of
event procedures that result in reduced amount of code you have to write to
respond to a user’s actions. Consider an example, if you have a control array of
10 textboxes call txtField, indexed 0 to 9, and then you can use one GotFocus
event among all the 10 members instead of using 10 different GotFocus events.
VB will automatically pass an Index parameter to the event procedure to
differentiate which member of the control array is being acted upon. The code of
GotFocus event procedure for the txtField control array might look as given below:

Private Sub txtField_GotFocus(Index As Integer)

txtField(Index).SelStart = 0

NOTES

Self-Instructional
Material 5

Lab: Visual Basic
Programming

 txtField(Index).SelLength = Len(txtField(Index).Text)

End Sub

Or
Private Sub txtField_GotFocus(Index As Integer)

With txtField(Index)

.SelStart = 0

.SelLength = Len(.Text)

End With

End Sub

In Visual Basic 6, the importance of using control arrays as a means of
dynamically creating new controls at run time is reduced. It has introduced a new
and more powerful capability.

 Syntax for refering to a member of a control array is:

ControlName(Index)[.Property]

 For events where VB already passes a parameter (for example, the
textbox’s KeyPress event where VB passes the KeyAscii parameter),
VB will add “Index” as the first parameter, followed by the parameters
that are usually passed to the event. The syntax for procedure header of
the KeyPress event of the txtField control array will be:

Private Sub txtField_KeyPress(Index As Integer, KeyAscii
As Integer)

Program 1.1: Create a form to enter total sales for five years in textboxes. All the
sales values of 5 years are added and displayed in the label under the button on
clicking Calculate button.

The labels and textboxes for reading sales values are created as Control
Arrays of labels and textboxes respectively.

Design of Data Entry Form

Calculate Button(btnCalculate) and Label (lblTotal) for displaying the total sales
of 5 years is in the design of the form.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
6 Material

Data Entry Form at Runtime

Control arrays for Labels and Textboxes are declared when the form is executed.
These control arrays elements are added and displayed on the form in the form_load
event. When a user fills the values in textboxes and clicks the Calculate Button
then a for loop is used to get values from textbox control array and add them
together in a variable total. After completing loop label lblTotal’s text property is
set with variable total’s value.

Public Class Form1

 Dim lblValues(4) As Label ‘control array of labels

 Dim txtValues(4) As TextBox ‘control array of textboxes

 Dim intCount As Integer

 Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

 For intCount = 0 To 4

‘ Delcare text box and label variable that are added as elements of control
arrays

 Dim MyTextbox As New TextBox

 Dim MyLabel As New Label

‘Set left and top values of labels to define display position in the form

 MyLabel.Left = 10

 MyLabel.Top = 10 + 25 * intCount

 ‘set the text of labels

 MyLabel.Text = “Year “ + CStr(intCount + 1)

 ‘set width of the labels

 MyLabel.Width = 50

 ‘add newly created label as an element at the current index defined by
intCount of the label control array

lblValues(intCount) = MyLabel

‘add the label control array element on the form using controls collection

Me.Controls.Add(lblValues(intCount))

‘Set left and top values of textboxes to define display position in the form

MyTextbox.Left = 100

 MyTextbox.Top = 10 + 25 * intCount

‘add newly created textbox as an element at the current index defined by
intCount of the textbox control array

 txtValues(intCount) = MyTextbox

‘add the textbox control array element on the form using controls collection

Me.Controls.Add(txtValues(intCount))
 Next
 End Sub

NOTES

Self-Instructional
Material 7

Lab: Visual Basic
Programming

Private Sub btnCalculate_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnCalculate.Click

Dim total as Double ‘ variable to store sum of sales while iterating through
control array of textboxes

For intCount = 0 To 4

‘Add values from textboxes to variable total using += assignment operator

 total += Val(txtValues(intCount).Text)

 Next

 ‘change fore color of display label

 lblTotal.ForeColor = Color.Red

‘display total in label at form bottom

lblTotal.Text = “Total 5 years sales is “ + CStr(total)

 End Sub

End Class

Output:

BLOCK 2

This block will cover the following topics:

1. Working with forms and dialogs.

2. Working with menus, data controls and common dialogs.

Application with Multiple Forms

You can open one form from another one in two ways. As a modal form, if you
open a second form, you can’t alter the emphasis of the second form until you
close it. That kind of shape is expressed by a message box. For applications that
involve an answer to the second form before behavior on other forms make sense,
this behaviour is convenient. Non-modally is another way in which you can open
one shape from the other.In this second style, without closing the second form
before returning to the first form, a user may switch back and forth between the

Lab: Visual Basic
Programming

NOTES

Self-Instructional
8 Material

forms. This kind of conduct is illustrated by the spreadsheet windows in a Microsoft
Excel file. Non-modal opening forms are ideal for applications where users need
the freedom to search two or more forms in any order.

Program 2.1 Write a program to demonstrate the implementation of MDI forms.

Step 1: Create new Windows forms application and name it as “Mdi_Form”. A
default Windows form will be displayed. Click on the Form Header and visit its
properties window. From properties Window change property “IsMdiContainer
to True”as shown below:

Step 2: Right click on Mdi_From in solution explorer and add two forms by
clicking over ADD option therein and Name them Form2 and Form3 respectively.
Customize these Form2(Child1_form) and Form3(Child2_form) as shown below
to make them to perform as two separate functions.

Step 3: Customise each control pasted on the Form2 and Form3 as per the
functions specified on labeled as show above. After customizing these form2. vb
and Form3.vb, the code behind them will be as shown below:

NOTES

Self-Instructional
Material 9

Lab: Visual Basic
Programming

Form2.vb

‘From2.vb

‘Program to demonestrate the use of MDI Form to perform
Addition operation

Public Class Child1_form

Private Sub Label1_Click(sender As Object, e As EventArgs)
Handles Label1.Click

End Sub

Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

Dim sum As Integer

sum = Convert.ToInt32(TextBox1.Text) + Convert.
ToInt32(TextBox2.Text)

TextBox3.Text = sum

End Sub

Private Sub Button2_Click(sender As Object, e As EventArgs)
Handles Button2.Click

TextBox1.Text = “ “

TextBox2.Text = “ “

TextBox3.Text = “ “

End Sub

End Class

Form3.vb

‘From3.vb

‘Program to demonestrate the use of MDI Form to perfrom
Subtration Operation

Public Class Child_form2

Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

Dim subt As Integer subt = Convert.ToInt32(TextBox2.Text)
- Convert. ToInt32(TextBox1.Text) TextBox3.Text = subt

End Sub

Private Sub Button2_Click(sender As Object, e As EventArgs)
Handles Button2.Click

TextBox1.Text = “ “

TextBox2.Text = “ “

TextBox3.Text = “ “

End Sub

End Class

Lab: Visual Basic
Programming

NOTES

Self-Instructional
10 Material

Application with Dialogs

Dialog boxes are used for user interaction and information retrieval. In simple
terms, a dialog box is a shape that is set to FixedDialog with its FormBorderStyle
enumeration property. You can make your own custom dialog boxes using Visual
Studio’s Windows Forms Designer.Add controls such as Textbox, Label, and
Button to customize dialog boxes as per your needs. The .NET Framework includes
predefined dialog boxes, such as File Open and message boxes that can be altered
for your own applications.

Dialog Box Creation

You have to start with a Form to create a dialog box, which can be obtained by
creating a Windows application.

Imports System.Drawing

Imports System.Windows.Forms

Module Exercise

 Public Class Starter

 Inherits Form

 Dim components As System.ComponentModel.Container

 Public Sub New()

 InitializeComponent()

 End Sub

 Public Sub InitializeComponent()

 Text = “Domain Configuration”

 Width = 320

 Height = 150

 Location = New Point(140, 100)

 StartPosition = FormStartPosition.CenterScreen

 End Sub

 End Class

 Function Main() As Integer

 Dim frmStart As Starter = New Starter

 Application.Run(frmStart)

 Return 0

 End Function

End Module

NOTES

Self-Instructional
Material 11

Lab: Visual Basic
Programming

Output:

Types of Dialog Boxes

There are three types of dialog boxes which are given below:

1. Modal: They are typically used to display messages and to set program
parameters. Modal dialogs come to the front of the computer, and when
the modal dialog box is open, you can not use the software. The modal
dialog box must be closed in order to continue using the software.

2. System modal: System modal dialog boxes, except that they supersede
the entire desktop area, are like modal boxes. Nothing else on the computer
can be tapped or picked while a device modal dialog box is open.

3. Modeless: Modeless dialog boxes are a different type of color, and are
more like windows than dialog boxes. First, in order to ensure that dialog
box messages are routed correctly, we need to change the message loop,
for example:

while(GetMessage(&msg, NULL, 0, 0))

{

 if(!IsDialogMessage(hDlg, &msg))

 {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

}

VB.NET Dialog Box

A dialog box is a temporary window for an application that recognizes a user’s
mouse or keyboard response to open a file, save a file, warning updates, color,
print, open a file dialog, etc. It is also beneficial to establish interaction and contact
between the user and the application. In addition, when the application has to

Lab: Visual Basic
Programming

NOTES

Self-Instructional
12 Material

communicate with users, the dialog box appears in a type, such as when an error
occurs, a warning message, a user’s acknowledgment or when the program requires
urgent action or if the decision is to be saved depending on the changes.

The All VB.NET dialog box inherits the CommonDialog class and overrides
the base class’s RunDialog() method to build the OpenFileDialog, PrintDialog,
Color, and Font dialog boxes. RunDialog() method is automatically called in
Windows type, when the dialog box calls its ShowDialog() function. Following
functions of the ShowDialog() method can be called during run time in the
Windows Form.

 Abort: It is used when a user clicks on the Abort button to return the
DialogResult.Abort value.

 Ignore: It is used when a user clicks on the Ignore button to return the
DialogResult.Ignore.

 None: Returns nothing, when the user clicks on the None button, and
the dialog box is continued running.

 OK: It returns a DialogResult.OK, when the user clicks the OK button.

 Cancel: It returns DialogResult.Cancel, when the user clicks the
Cancel button.

 Yes: It returns DialogResult.Yes.

 Retry: It returns a DialogResult.Retry,

 No: It returns DialogResult.No,

Commonly used dialog box controls in the VB.NET Windows form are as
follows.

1. Color Dialog Box: It is used to display a color dialog that allows the
user to choose a color from a predefined color or to specify a custom
color.

2. Font DialogBox: It allows the user to choose the font, font size, color,
and style to be added to the current text range.

3. OpenFile Dialog Box: It is used to build a prompt box that allows
users to pick a file that they want to open and allows several files to be
selected.

4. Save File Dialog Box: It prompts the user to choose a file saving
location and allows the user to decide the name of the data saving file.

5. Print Dialog Box: This is used to create a print dialog that allows the
user to print documents by selecting the printer and setting the page to
be printed through the Windows application.

A sample code for creating a dialog box is given below:

Public Class Dialog

 Private Sub Dialog_Load(sender As Object, e As EventArgs)
Handles MyBase.Load

NOTES

Self-Instructional
Material 13

Lab: Visual Basic
Programming

 Button1.Text = “Click Me” ‘Set the name of button

 Me.Text = “Win Form Title Name” ‘ Set the title name for
the Windows Form

 Button1.BackColor = Color.Green ‘ Background color of
the button

 End Sub

Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

 Dim result1 As DialogResult = MessageBox.Show(“Is VB.NET
Dialog Dox show me message?”,

 “Important Question”,

 MessageBoxButtons.YesNo)

 End Sub

End Class

Compile and Run

Now, click on the Click Me button of the Windows Form, it displays the
dialog box, as shown below.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
14 Material

Applications with Menus

In VB6, the MainMenu feature was not present; it was added to VB.NET. But,
as in previous versions of VB, you can use the methods and properties of the
Menu portion to add and change menu items in either design-time or run-time.

Working with Menus in Design-Time

You need to add a MainMenu attribute to your form to add menus to your VB.NET
application during design-time. You can build, add, and change menus and menu
bars with the MainMenu control and set their properties in the Properties window.
To add a MainMenu component, open the Forms Toolbox and add the MainMenu
component to your form.Once you have added the control to your form, you
quickly can add menus to your VB.NET windows forms.

In Windows type, a menu is used as a menu bar containing a list of related
commands and is executed via MenuStrip Control also known as the VB.NET
MenuStrip Control. The Menu control. Menu items are created with
ToolStripMenuItem Objects. In addition, the ToolStripDropDownMenu and
ToolStripMenuItem objects allow complete structure control, appearance,
functionalities to create menu items, submenus, and drop-down menus in a
VB.NET application.

Step 1: Drag the MenuStrip control from the toolbox and drop it on to the Form.

NOTES

Self-Instructional
Material 15

Lab: Visual Basic
Programming

Step 2: We can set various properties of the Menu by clicking on the MenuStrip
control once the MenuStrip is added to the form.

Properties of the MenuStrip Control

Properties Description
CanOverflow It gets or sets a value indicate that the MenuStrip supports overflow

functionality.
GripStyle It gets or sets the visibility of the grip used to reposition the control.
MdiWindowListItem It gets or sets the ToolStripMenuItem that is used to display a list of

Multiple-document interface (MDI) child forms.
Stretch It gets or sets a value indicating whether the MenuStrip stretches

from end to end in its container.
ShowItemToolTips It gets or sets a value indicating whether ToolTips are shown for the

MenuStrip.

Events of the MenuStrip Control

Events Description
MenuActivate Happen when the user accesses the menu with the

keyboard or mouse.
MenuDeactivate Happen when the MenuStrip is deactivated.

Windows Forms contain a rich set of classes for creating your own custom

menus with modern appearance, look and feel. The MenuStrip,
ToolStripMenuItem, ContextMenuStrip controls are used to create menu bars
and context menus efficiently.

Controls Description
MenuStrip It provides a menu system for a form.
ContextMenuStrip It represents a shortcut menu.
ToolStripMenuItem It represents a selectable option displayed on a MenuStrip or

ContextMenuStrip. The ToolStripMenuItem control replaces and
adds functionality to the MenuItem control of previous versions.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
16 Material

Methods of the MenuStrip Control

 Methods Description
CreateAccessibilityInstance() It is used to create a new accessibility instance for the

MenuStrip Control.
CreateDefaultItem() The CreateDefaultItem method is used to create a

ToolStripMenuItem with the specified text, image, and event
handlers for the new MenuStrip.

ProcessCmdKey() The ProcessCmdKey method is used to process the command
key in the MenuStrip Control.

OnMenuActivate() It is used to initiate the MenuActivate event in the MenuStrip
control.

OnMenuDeactivate() It is used to start the MenuDeactivate event in the MenuStrip
control.

In the screenshot below, we have created the menu and sub-items of the

menu bar in the form.

Now, we write the Shortcut keys for the File subitems, such as NewCtrl
+ N, Open  Ctrl + O, etc.

NOTES

Self-Instructional
Material 17

Lab: Visual Basic
Programming

After that, we can see the subitems of the Files with their Shortcut keys,

The code for Menus is given below:

Menus.vb

Public Class Menus

Private Sub Menus_Load(sender As Object, e As EventArgs)
Handles MyBase.Load

 Me. Text = “ Menus.vb” ‘set the title of the bar

 BackColor = Color.SkyBlue

 End Sub

Output:

Lab: Visual Basic
Programming

NOTES

Self-Instructional
18 Material

Click on the File menu that shows the multiple options related to files.

Application using Data Controls

Data Controls are used to create interfaces for manipulating and editing data from
a data source. For example, TextBox or DropdownBox can be used to display
and/or edit data from a data source.

The Visual Basic 2012 toolbox provides the data controls as shown in
screenshot below:

The data control can be used to perform the following tasks:

1. It is used for connecting to a database.

2. To open a specified database table.

3. For creating a virtual table based on a database query.

4. Passing database fields to other Visual Basic tools.

5. Adding/updating records.

6. Identify errors that may occur while accessing data.

7. Close the database connection.

NOTES

Self-Instructional
Material 19

Lab: Visual Basic
Programming

Properties of Data Controls

Data Control
Properties

Description

Align It determines where data control is displayed.
Caption Phrase displayed on the data control.
ConnectionString It contains the information for establishing a connection to a database.
Recordset A set of records defined by a data control’s ConnectionString and

RecordSource properties. Run-time only.
LockType It specifies the type of locks placed on records during editing (default

setting makes databases read-only).
RecordSource It determines the table (or virtual table) the data control is attached to.

Creating the Database

Microsoft Access or SQL Server can be used to create your database.

Following are steps for creating an SQL server database:

1. Open SQL Server Management Studio.

2. Right click on the folder named Databases and select New.

3. Give it a name of Students and click OK. After that you will now see Students
in the list of databases.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
20 Material

4. Expand Students in the database list, and right click on Tables, then select
New Table.

5. Enter the following fields in the table.

6. Click on the Save button and name your Table StudentInfo.

7. In SQL Management Studio, click on New Query and write the following:

INSERT INTO [Students].[dbo].[StudentInfo]

 ([StudentName]

 ,[StudentSurname]

 ,[StudentNumber])

 VALUES

 (‘Hannes’, ‘du Preez’, 1)

 INSERT INTO [Students].[dbo].[StudentInfo]

 ([StudentName]

 ,[StudentSurname]

 ,[StudentNumber])

 VALUES

 (‘YourName’, ‘YourSurname’, 2)

GO

8. Click on Execute.

Creating a Microsoft Access 2010 Database

Steps for creating an MS Access 2010 database are as follows:

1. Open Microsoft Access.

NOTES

Self-Instructional
Material 21

Lab: Visual Basic
Programming

2. Select Blank Database.

3. On the right side of the screen enter the File name, Students.accdb (in this
case) and click Create.

4. Inside the new Screen, edit the Columns and data to reflect.

5. Save the table as StudentInfo.

Application using Common Dialogs

All Windows applications use standard dialog boxes for common operations.
These dialog boxes are implemented as standard controls in the Toolbox. To use
any of the common dialog controls in your interface, just place the appropriate
control from the Dialog section of the Toolbox on your form and activate it from
within your code by calling the ShowDialog method.

The Common Dialog control provides a standard set of dialog boxes for
operations such as opening, saving, and printing files, as well as selecting colors
and fonts and displaying help. Any six of the different dialog boxes can be displayed

Lab: Visual Basic
Programming

NOTES

Self-Instructional
22 Material

with just one Common Dialog control. A particular dialog box is displayed by
using one of the six “Show...” methods of the Common Dialog control: ShowOpen,
ShowSave, ShowPrinter, ShowColor, ShowFont, or ShowHelp.

Fig. 2.1 Common Dialog Controls

OpenFileDialog : The OpenFileDialog control prompts the user to open
a file and allows the user to select a file to open. The user can check if the file
exists and then open it. The OpenFileDialog control class inherits from the abstract
class FileDialog.

If the ShowReadOnly property is set to True, then a read-only check box
appears in the dialog box. You can also set the ReadOnlyChecked property to
True, so that the read-only check box appears checked.

NOTES

Self-Instructional
Material 23

Lab: Visual Basic
Programming

Consider an example of loading an image file in a picture box, using the open file
dialog box. Apply the following steps:

1. Drag and drop a PictureBox control, a Button control and OpenFileDialog
control on the form.

2. Set the Text property of the button control to ‘Load Image File’.

3. Double-click the Load Image File button and modify the code of the Click
event as given below:

Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

If OpenFileDialog1.ShowDialog <> Windows.Forms.
DialogResult.Cancel Then

PictureBox1.Image = Image.FromFile (OpenFileDialog1.
FileName)

End If

End Sub

Output:

Click on the Load Image File button to load an image stored on your computer.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
24 Material

FontDialog: It displays a dialog box that enables users to set a font and its attribute.

Fig. 2.2 Open and Font Common Dialog Boxes

It prompts the user to choose a font from among those installed on the local
computer and lets the user select the font, font size, and color. It returns the Font
and Color objects.

By default, the Color ComboBox is not shown on the Font dialog box. You
should set the ShowColor property of the FontDialog control to be True.

Consider an example to change the font and color of the text from a rich
text control using the Font dialog box. Apply the following steps:

1. Drag and drop a RichTextBox control, a Button control and a FontDialog
control on the form.

2. Set the Text property of the button control to ‘Change Font’.

NOTES

Self-Instructional
Material 25

Lab: Visual Basic
Programming

3. Set the ShowColor property of the FontDialog control to True.

4. Double-click the Change Color button and modify the code of the Click
event as given below:

Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

If FontDialog1.ShowDialog <> Windows.Forms.
DialogResult.Cancel Then

 RichTextBox1.ForeColor = FontDialog1.Color

 RichTextBox1.Font = FontDialog1.Font

 End If

End Sub

Output:

The output obtained when the application is compiled and run using Start button
available at the Microsoft Visual Studio tool bar will be:

Enter some text and Click on the Change Font button.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
26 Material

In the Font dialog box, choose a font and a color, and then press the OK
button. The font and color selected will be added as the font and foreground color
of the text in the Rich text frame.

SaveFileDialog: It prompts the user to select a location for saving a file
and allows the user to specify the name of the file to save data. The SaveFileDialog
control class inherits from the abstract class FileDialog.

Consider an example to save the text entered into a rich text box by the
user using the save file dialog box. Apply the following steps:

1. Drag and drop a Label control, a RichTextBox control, a Button control
and a SaveFileDialog control on the form.

2. Set the Text property of the label and the button control to ‘We
appreciate your comments’ and ‘Save Comments’, respectively.

3. Double-click the Save Comments button and modify the code as given
below:

NOTES

Self-Instructional
Material 27

Lab: Visual Basic
Programming

Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

SaveFileDialog1.Filter = “TXT Files (*.txt*)|*.txt”

If SaveFileDialog1.ShowDialog = Windows.Forms.
DialogResult.OK _

 Then

 My.Computer.FileSystem.WriteAllText _

 (SaveFileDialog1.FileName, RichTextBox1.Text, True)

 End If

End Sub

When the application is compiled and run using Start button available at the
Microsoft Visual Studio tool bar, it will show the screenshot given below:

ColorDialog: It allows users to choose a color or choose custom colors
from a set of predefined colors. The ColorDialog control class represents a common
dialog box that displays available colors along with controls that enable the user to
define custom colors. It lets the user select a color.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
28 Material

Consider an example to change the forecolor of a label control using the
color dialog box. Apply the following steps:

1. Drag and drop a label control, a button control and a ColorDialog control
on the form.

2. Set the Text property of the label and the button control to ‘Give me a
new Color’ and ‘Change Color’, respectively.

3. Change the font of the label as per your likings.

4. Double-click the Change Color button and modify the code of the Click
event as given below.

Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

If ColorDialog1.ShowDialog <> Windows.Forms.
DialogResult.Cancel Then

 Label1.ForeColor = ColorDialog1.Color

 End If

End Sub

When the application is compiled and run using Start button available at the
Microsoft Visual Studio tool bar, it will show the following output window.

Clicking on the Change Color button, the color dialog appears, select a
color and click the OK button. The selected color will be applied as the forecolor
of the text of the label.

PrintDialog: It displays a dialog box that enables users to select a printer
and set its attributes. There are various other controls related to printing of
documents. Let us have a brief look at these controls and their purpose.

1. PrintDocument control: It provides support for actual events and
operations of printing in Visual Basic and sets the properties for printing.

2. PrinterSettings control: It is used to configure how a document is
printed by specifying the printer.

3. PageSetUpDialog control: It allows the user to specify page-related
print settings including page orientation, paper size and margin size.

NOTES

Self-Instructional
Material 29

Lab: Visual Basic
Programming

4. PrintPreviewControl control: It represents the raw preview part of
print previewing from a Windows Forms application, without any dialog
boxes or buttons.

5. PrintPreviewDialog control: It represents a dialog box form that
contains a PrintPreviewControl for printing from a Windows Forms
application.

Consider an example to show a Print dialog box in a form. Apply the
following steps:

1. Add a PrintDocument control, a PrintDialog control and a Button control
on the form. The PrintDocument and the PrintDialog controls are found
on the Print category of the controls toolbox.

2. Change the text of the button to ‘Print’.

3. Double-click the Print button and modify the code of the Click event as
shown below:

Private Sub Button1_Click(sender As Object, e As EventArgs)
Handles Button1.Click

 PrintDialog1.Document = PrintDocument1

PrintDialog1.PrinterSettings = PrintDocument1.
PrinterSettings

 PrintDialog1.AllowSomePages = True

Lab: Visual Basic
Programming

NOTES

Self-Instructional
30 Material

 If PrintDialog1.ShowDialog = DialogResult.OK Then

PrintDocument1.PrinterSettings = PrintDialog1.
PrinterSettings

 PrintDocument1.Print()

 End If

End Sub

When the application is compiled and run using Start button available at the
Microsoft Visual Studio tool bar, the output produced will be:

BLOCK 3

This block will cover the following topics:

1. Drag and drop events

2. Database management

3. Creating ActiveX controls

4. Database Object (DAO) and properties

5. Active Data Objects (ADO) and OLEDB

Drag and Drop Events

It is essentially a pointing interface gesture in the drag and drop case, in which the
user selects a virtual object by “Grabbing” it and moving it to another position or
to another virtual object.

You have certainly used drag and drop techniques as a Windows user to
copy or transfer files from one folder to another, to remove a file by dragging it to
the recycling bin, and to perform actions in different programs of the application.
In Visual Basic, the drag-and-drop features allow you to integrate this functionality

NOTES

Self-Instructional
Material 31

Lab: Visual Basic
Programming

into the programs you are creating. The action of holding a mouse button down
and moving a control is called dragging, and the action of releasing the button is
called dropping.

Basically, a control may act as a source of a drag-and-drop process or as a
destination. Visual Basic supports two drag-and-drop modes, automatic or manual.
You only need to set a property in automatic mode at design time or at run time
and let Visual Basic do it all. Conversely, in manual mode you have to respond to
a number of events that occur while dragging is in progress, but in return you get
better control over the process. To incorporate drag and drop functionality in your
VB programs, you use a handful of properties, events, and methods.

Properties

The two properties involved are DragMode that specifies whether Automatic or
Manual dragging will be used, and DragIcon that specifies which icon is displayed
when the control is dragged.

Events

It involves two events i.e. DragDrop, which happens when a control is lowered
onto the target, and DragOver, which happens when a control is dragged over the
object.

Method

The Drag method starts or stops manual dragging.

Program 3.1: Create a program on drag and drop operation. For this, just create
a VB.net windows application. Then design a form with Drag Drop and control
&event procedure. To enable drag & drop for text, first you have to place two
textboxes and set Allowdrop property of a second textbox to true and after that
write the code given below:

Private MouseIsDown As Boolean = False ‘variable
declaration

Private Sub TextBox1_MouseDown(ByVal sender As Object,
ByVal e As _

System.Windows.Forms.MouseEventArgs) Handles
TextBox1.MouseDown

‘Set a flag to show that the mouse is down.

MouseIsDown = True

End Sub

Private Sub TextBox1_MouseMove(ByVal sender As Object,
ByVal e As _

System.Windows.Forms.MouseEventArgs) Handles
TextBox1.MouseMove

Lab: Visual Basic
Programming

NOTES

Self-Instructional
32 Material

If MouseIsDown Then

‘Initiate dragging.

TextBox1.DoDragDrop(TextBox1.Text,DragDropEffects.Copy)

End If

MouseIsDown = False

End Sub

Private Sub TextBox2_DragEnter(ByVal sender As Object,
ByVal e As _

System.Windows.Forms.DragEventArgs) Handles
TextBox2.DragEnter

‘Check the format of the data being dropped.

If (e.Data.GetDataPresent(DataFormats.Text)) Then

‘Display the copy cursor.

e.Effect = DragDropEffects.Copy

Else

‘Display the no-drop cursor.

e.Effect = DragDropEffects.None

End If

End Sub

Private Sub TextBox2_DragDrop(ByVal sender As Object,
ByVal e As _

System.Windows.Forms.DragEventArgs) Handles
TextBox2.DragDrop

‘Paste the text.

TextBox2.Text = e.Data.GetData(DataFormats.Text)

End Sub

From the above code, it can be seen that the DoDragDrop method is called
in the MouseMove event and the MouseDown event is used to set a flag, which
shows that the mouse is down. In the MouseMove event, the MouseIsDown flag
is set to False. You can handle the drag in the MouseDown event also. Dring this
every time a user clicks the control, and then no-drag cursor would be displayed.

The GetDataPresent method checks the format of the data being dragged
in case of DragEnter event. In our case it is text, so the Effect property is set
to Copy, which in turn displays the copy cursor. The GetData method is used to
retrieve the text from the DataObject. In case of DragDrop event it also assigns it
to the target TextBox.

NOTES

Self-Instructional
Material 33

Lab: Visual Basic
Programming

The example code given below draggs a different type of data and provides
support for both cutting and copying. For these just add two picturebox controls
and write the code given below:

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As _

System.EventArgs) Handles MyBase.Load

‘Enable dropping.

PictureBox2.AllowDrop = True

End Sub

Private Sub PictureBox1_MouseDown(ByVal sender As Object,
ByVal e As _

System.Windows.Forms.MouseEventArgs) Handles
PictureBox1.MouseDown

If Not PictureBox1.Image Is Nothing Then

‘Set a flag to show that the mouse is down.

m_MouseIsDown = True

End If

End Sub

Private Sub PictureBox1_MouseMove(ByVal sender As Object,
ByVal e As _

System.Windows.Forms.MouseEventArgs) Handles
PictureBox1.MouseMove

If m_MouseIsDown Then

‘Initiate dragging and allow either copy or move.

P i ct u r eB o x1 .D o DragDro p(Picture Box1.Im age,
DragDropEffects.Copy Or _

DragDropEffects.Move)

End If

m_MouseIsDown = False

End Sub

Private Sub PictureBox2_DragEnter(ByVal sender As Object,
ByVal e As _

System.Windows.Forms.DragEventArgs) Handles
PictureBox2.DragEnter

If e.Data.GetDataPresent(DataFormats.Bitmap) Then

‘Check for the CTRL key.

If e.KeyState = 9 Then

Lab: Visual Basic
Programming

NOTES

Self-Instructional
34 Material

e.Effect = DragDropEffects.Copy

Else

e.Effect = DragDropEffects.Move

End If

Else

e.Effect = DragDropEffects.None

End if

End sub

Private Sub PictureBox2_DragDrop(ByVal sender As Object,
ByVal e As _

System.Windows.Forms.DragEventArgs) Handles
PictureBox2.DragDrop

‘Assign the image to the PictureBox.

PictureBox2.Image = e.Data.GetData(DataFormats.Bitmap)

‘If the CTRL key is not pressed, delete the source picture.

If Not e.KeyState = 8 Then

PictureBox1.Image = Nothing

End If

End Sub

The AllowDrop property for the second PictureBox control is set in
the Form1_Load event. In both the DragEnter and DragDrop events, the code
checks to see if the CTRL key is pressed to determine whether to copy or move
the picture.

Fig. 3.1 Control before being dragged to a target

NOTES

Self-Instructional
Material 35

Lab: Visual Basic
Programming

Fig. 3.2 Control after being dragged to a target

Database Management

Database means a place where data can be stored in a structured manner. It is a
shared collection or batch of data that is logically related, along with their
descriptions designed to meet the information requirements of an organization.

Database Management System (DBMS) is a software system that allows
users to not only define and create a database but also maintain it and control its
access. A database management system can be called a collection of interrelated
data (usually called database) and a collection or set of programs that helps in
accessing, updating and managing that data (which form part of a database
management system).

The primary benefit of using a DBMS is to impose a logical and structured
organization on data. A DBMS provides simple mechanisms for processing huge
volumes of data because it is optimized for operations of this type. The two basic
operations performed by the DBMS are as follows:

1. Management of data in the database
2. Management of users associated with the database

Management of the data means specifying how data will be stored, structured
and accessed in the database. This includes the following:

 Defining: Specifying data types and structures, and constraints for data
to be stored.

 Constructing: Storing data in a storage medium.
 Manipulating: Involves querying, updating and generating reports.
 Sharing: Allowing multiple users and programs to access data

simultaneously.

Further, the database management system must offer safety and security of
the information stored, in case unauthorized access is attempted or the system
crashes. If data is required to be shared among many users, the system must
ensure that possible anomalous results are avoided.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
36 Material

Management of database users means managing the users in such a way
that they are able to perform any desired operations on the database. A DBMS
also ensures that a user cannot perform any operation for which he is not authorized.

In short, a DBMS is a collection of programs performing all necessary
actions associated with a database. There are many DBMSs available in the market,
such as MySQL, Sybase, Oracle, MongoDB, Informix, PostgreSQL, SQL Server
etc.

How to Create Active X Control

ActiveX Controls were previously known as OLE controls. To render web pages
more interactive, an ActiveX control can be put on web pages. Much like you put
a Java applet on a page on the internet. To bring advanced features to the user
experience, app developers have used ActiveX controls on their web pages.

Program 3.2: To create an ActiveX control that will show a simple user interface
and accept input from a web page. Following are the steps for creating an ActiveX
control.

1. Create an assembly (class library project) containing an item of type User
Control.

2. Expose an interface for the control.

3. Embed the user control into a web page.

4. Transfer data from a web form to the control and display the data on the
control.

First, we will create a simple ActiveX control to get an overall idea about
how to create ActiveX controls.

Step 1: Create an assembly

Create a new project of type Class Library. Name the class library ActiveXDotNET.

NOTES

Self-Instructional
Material 37

Lab: Visual Basic
Programming

Delete the Class1.cs file from your project once the project is developed,
as it won’t be required. Next, by right-clicking the project in your Solution Explorer,
add User Control to the project, select Add, then User Control. Name your control
as “myControl”.

On the user control, add some UI elements, and a text box control named
txtUserText. The txtUserText control will display the user data that is typed into
the web form. This will demonstrate how to pass data to your User Control.

When you are done adding your user interface to the control we now have
to add a key element to the control, an Interface. The interface will allow COM/
COM+ objects to know what properties they can use. In this case, we are going
to expose one public property named UserText. That property will allow us to set
the value of the text box control.

Step 2: Expose the interface for the control

First, create a private String to hold the data passed from the web form to the
control:

private Dim mStr_UserText as String

Place this String just inside the Class myControl.

Next, we will create a public property. The web page will use this property
to pass text back to your control. This property will allow reading and writing of
the value mStr_UserText.

Public Property UserText() As [String]

Get

Return mStr_UserText

End Get

Set(ByVal Value As [String])

mStr_UserText = value

‘Update the text box control value also.

txtUserText.Text = value

End Set

Lab: Visual Basic
Programming

NOTES

Self-Instructional
38 Material

End Property

In this example, you will note the extra code in the set section of the public property.
We will set the private String value equal to the value passed to the property when
a value is passed from the web form to the control. We are simply going to modify
the value of the Text Box control directly. Typically you would not do this. Instead,
you would raise an event and then validate the data being passed by examining the
private variable mStr_UserText. Then you would set the value of the Text Box
Control. However, it would add significant code to this example and for simplicity
sake we are omitting that security precaution.

Now, you have a public property that .NET assemblies can use, you need
to make that property available to the COM world. This can be done by creating
an interface and making the myControl class inherit the interface. It allows COM
objects to see what properties are made available. Now, the code will be:

Namespace ActiveX.NET

{

Public Interface AxMyControl

Property UserText() As String

End Property

End Interface ‘AxMyControl

Public Class myControl

Inherits System.Windows.Forms.UserControl, AxMyControl

Private mStr_UserText As [String]

Public Property UserText() As String

Get

Return mStr_UserText

End Get

Set(ByVal Value As String)

mStr_UserText = value

‘Update the text box control value also.

txtUserText.Text = value

End Set

End Property

End Class ‘myControl

Notice that, we have an interface defined. The interface tells COM/COM+
that there is a public property available for use that is of type String and is readable
(get) and writeable (set). All we do now is have the Class myControl inherit the
interface and viola! We have a .NET assembly that acts like an ActiveX Control.

NOTES

Self-Instructional
Material 39

Lab: Visual Basic
Programming

Step 3: Embed the user control in a web page

The last thing we do now is use the control in an example web page.

<html>

<body color=white>

<hr>

<OBJECT id=”myControl1" name=”myControl1"
classid=”ActiveX.NET.dll#ActiveXDotNET.myControl”width=288
height=72>

</OBJECT>

<form name=”frm” id=”frm”>

<input type=”text” name=”txt” value=”enter text
here”><input type=button value=”Click me”onClick=”doScript();”>

</form>

<hr>

</body>

<script language=”javascript”>

function doScript()

{

myControl1.UserText = frm.txt.value;

}

</script>

</html>

You will notice in the HTML code above, that you call your .NET assembly
very similar to an ActiveX control; however there is no GUID, and no .OCX file.
Your CLASSID is now the path to your DLL and the Namespace.Classname
identifier. Refer to the code above to understand the syntax of the CLASSID
object tag property. Place the HTML file and your DLL in the same directory on
your web server and navigate to the HTML document. (Do not load the HTML
document by double clicking on it, navigate to it in your browser by using the Fully
Qualified URL.) *NOTE: You might need to add your web server to your Trusted
Sites list in your Internet Explorer browser.

Step 4: Transfer data from the web form to the user control

When you load the HTML page, your control should load into the page and you
will see a web form with a text box and a button. In this example, if you type some
text into the text box and click the button, it will use JavaScript to send the text
from the web page form, to the User Control that you just built. Your User Control
will then display the text in the Text Box control that I on the form.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
40 Material

Program 3.3 Another program of ActiveX control.

Step 1: Create an assembly

First, you create a new project of type Class Library. Name the class library
ActiveXDotNET.

Once the project is created, delete the Class1.cs file from your project as it
will not be necessary. Next, add a User Control to the project by right clicking on
the project in your solution explorer, choose Add, then User Control. Name your
user control myControl.

On the user control, add some UI elements, and a text box control named
txtUserText. The txtUserText control will display the user data that is typed into
the web form. This will demonstrate how to pass data to your User Control.

When you are done adding your user interface to the control we now have
to add a key element to the control, an Interface. The interface will allow COM/
COM+ objects to know what properties they can use. In this case, we are going
to expose one public property named UserText. That property will allow us to set
the value of the text box control.

Step 2: Expose the Interface for the control

First, create a private String to hold the data passed from the web form to the
control:

private String mStr_UserText;

Place this String just inside the Class myControl.

NOTES

Self-Instructional
Material 41

Lab: Visual Basic
Programming

Next, we will create a public property. The web page will use this property
to pass text back to your control. This property will allow reading and writing of
the value mStr_UserText.

public String UserText {

 get {

 return mStr_UserText;

 }

 set {

 mStr_UserText = value;

 //Update the text box control value also.

 txtUserText.Text = value;

 }

}

In this example, you will note the extra code in the set section of the public
property. When a value is passed from the web form to the control we will set the
private String value equal to the value passed to the property. In addition, we are
simply going to modify the value of the Text Box control directly. Typically you
would NOT do this. Instead, you would raise an event and then validate the data
being passed by examining the private variable mStr_UserText. Then you would
set the value of the Text Box Control. However, that would add significant code to
this example and for simplicity sake we are omitting that security precaution.

Now that you have a public property that .NET assemblies can use, you
need to make that property available to the COM world. We do this by creating
an Interface and making the myControl class inherit the interface. This will allow
COM objects to see what properties we have made available.

Your code will now look like this:

namespace ActiveXDotNET {

 public interface AxMyControl {

 String UserText {

 set;

 get;

 }

 }

 public class myControl: System.Windows.Forms.UserControl,

 AxMyControl {

 private String mStr_UserText;

 public String UserText {

 get {

 return mStr_UserText;

Lab: Visual Basic
Programming

NOTES

Self-Instructional
42 Material

 }

 set {

 mStr_UserText = value;

 //Update the text box control value also.

 txtUserText.Text = value;

 }

 }

Notice that we now have an interface defined, the interface tells COM/
COM+ that there is a public property available for use that is of type String and is
readable (get) and writeable (set). All we do now is have the Class myControl
inherit the interface and viola! We have a .NET assembly that acts like an ActiveX
Control.

Step 3: Embed the user control in a web page

The last thing we do now is use the control in an example web page.

<html>

<body color=white>

<hr>

<OBJECT id=”myControl1" name=”myControl1"
classid=”ActiveX.NET.dll#ActiveX.NET.myControl” width=288
height=72>

</OBJECT>

<form name=”frm” id=”frm”>

<input type=”text” name=”txt” value=”enter text
here”><input type=button value=”Click me”
onClick=”doScript();”>

</form>

<hr>

</body>

<script language=”javascript”>

 function doScript()

 {

 myControl1.UserText = frm.txt.value;

 }

</script>

</html>

NOTES

Self-Instructional
Material 43

Lab: Visual Basic
Programming

You will notice in the HTML code above, that you call your .NET assembly
very similar to an ActiveX control; however there is no GUID, and no .OCX file.
Your CLASSID is now the path to your DLL and the Namespace.Classname
identifier. Refer to the code above to understand the syntax of the CLASSID
object tag property. Place the HTML file and your DLL in the same directory on
your web server and navigate to the HTML document. (Do not load the HTML
document by double clicking on it, navigate to it in your browser by using the Fully
Qualified URL.) *NOTE: You might need to add your web server to your Trusted
Sites list in your Internet Explorer browser.

Step 4: Transfer data from the web form to the user control

When you load the HTML page, your control should load into the page and you
will see a web form with a text box and a button. In this example, if you type some
text into the text box and click the button, it will use JavaScript to send the text
from the web page form, to the User Control that you just built. Your User Control
will then display the text in the Text Box control that I on the form.

Database Object (DAO) and Properties

DAO pattern or Data Access Object pattern is used to separate low level data
accessing API or operations from high level business services. The participants in
Data Access Object Pattern are as follows.

1. DAO Interface: It defines the standard operations to be performed on a
model object(s).

2. DAO Concrete Class: It is responsible to get data from a data source.

3. Model or Value Object: It is simple POJO containing get/set methods to
store data retrieved using DAO class.

When it comes to implementing a data access solution in your VB
applications, you currently have three choices: Data Access Objects (DAO),
Remote Data Objects (RDO), and ActiveX Data Objects (ADO).

DAO was created before RDO and ADO, is a set of objects that enables
client applications to programmatically access data. DAO not only allows you to
access data but also helps in controling and managing local and remote databases
in different formats. DAO can be used create and modify the database structure;
create tables, queries, relationships, and indexes; retrieve, add, update, and remove
data; implement security; work with different file formats; and link tables to other
tables.

Implementation

Program 3.4: We are going to create a Student object acting as a Model or Value
Object. StudentDao is Data Access Object Interface.StudentDaoImpl is concrete
class implementing Data Access Object Interface. DaoPatternDemo, our demo
class, will use StudentDao to demonstrate the use of Data Access Object pattern.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
44 Material

Step 1: Create Value Object.

public class Student {

 private String name;

 private int rollNo;

 Student(String name, int rollNo){

 this.name = name;

 this.rollNo = rollNo;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public int getRollNo() {

 return rollNo;

 }

 public void setRollNo(int rollNo) {

 this.rollNo = rollNo;

 }

}

NOTES

Self-Instructional
Material 45

Lab: Visual Basic
Programming

Step 2: Create Data Access Object Interface.

import java.util.List;

public interface StudentDao

{

 public List<Student> getAllStudents();

 public Student getStudent(int rollNo);

 public void updateStudent(Student student);

 public void deleteStudent(Student student);

}

Step 3: Create concrete class implementing above interface.

public class DaoPatternDemo

{

 public static void main(String[] args)

{

 StudentDao studentDao = new StudentDaoImpl();

 //print all students

 for (Student student : studentDao.getAllStudents())

{

 System.out.println(“Student: [RollNo : “ +
student.getRollNo() + “, Name : “ + student.getName() + “]”);

 }

 //update student

 Student student =studentDao.getAllStudents().get(0);

 student.setName(“Michael”);

 studentDao.updateStudent(student);

 //get the student

 studentDao.getStudent(0);

 System.out.println(“Student: [RollNo : “ +
student.getRollNo() + “, Name : “ + student.getName() + “]”);

 }

}

Step 4: Use the StudentDao to demonstrate Data Access Object pattern usage.

public class DaoPatternDemo {

 public static void main(String[] args) {

Lab: Visual Basic
Programming

NOTES

Self-Instructional
46 Material

 StudentDao studentDao = new StudentDaoImpl();

 //print all students

 for (Student student : studentDao.getAllStudents()) {

 System.out.println(“Student: [RollNo : “ +
student.getRollNo() + “, Name : “ + student.getName() + “]”);

 }

 //update student

 Student student =studentDao.getAllStudents().get(0);

 student.setName(“Michael”);

 studentDao.updateStudent(student);

 //get the student

 studentDao.getStudent(0);

 System.out.println(“Student: [RollNo : “ +
student.getRollNo() + “, Name : “ + student.getName() + “]”);

 }

}

Step 5: Verify the output.

Student: [RollNo : 0, Name : Robert]

Student: [RollNo : 1, Name : John]

Student: Roll No 0, updated in the database

Student: [RollNo : 0, Name : Michael]

DAO objects

Let us have a look at the DAO objects to understand DAO better.

Table 3.1 Names and descriptions of common DAO objects

NOTES

Self-Instructional
Material 47

Lab: Visual Basic
Programming

The DBEngine is the highest-level object in the DAO object model. It
contains all other objects and collections. The Database object is the member of
the Databases collection of the default Workspace object, which is a member of
the Workspaces collection of the DBEngine object.

Program 3.5: Let’s create a simple VB project to access the data stored in
Microsoft’s sample Northwind database to demonstrate how you might put DAO
to work.

1. Open VB and start a new project.

2. Go to Project References and select Microsoft DAO 3.6 Object Library
(depending on the version of VB you are using), as shown in Figure given
below.

Add two combo boxes (cboLastNameJet and cboLastNameODBCDirect)
and two command buttons (cmdGetDataJet and cmdGetDataODBCDirect) to
the form as shown below.

Add the following code in to the cmdGetDataJet_Click() event.

Private Sub cmdGetDataJet_Click()

 Dim wrkJet As DAO.Workspace

 Dim dbJet As DAO.Database

 Dim rsJet As DAO.Recordset

 Dim strLocation As String

Lab: Visual Basic
Programming

NOTES

Self-Instructional
48 Material

 ‘location of the Northwind.mdb database to be used for
Microsoft Jet connection

 strLocation = “D:\Program Files\Microsoft
Office\Office\Samples\”

 ‘Open Microsoft Jet workspace

 Set wrkJet = CreateWorkspace(“”, “admin”, “”, dbUseJet)

 ‘Open Microsoft Jet database

 Set dbJet = wrkJet.OpenDatabase(strLocation &
“Northwind.mdb”)

 ‘Open Microsoft Jet read-only recordset

 Set rsJet = dbJet.OpenRecordset(“SELECT LastName FROM
Employees”, dbOpenDynaset, dbReadOnly)

 With cboLastNameJet

 If rsJet.EOF And rsJet.BOF Then

 ‘no data - disable combo box

 .Enabled = False

 Else

 ‘clear the combo box

 .Clear

 ‘move the recordset to the first row

 rsJet.MoveFirst

 Do Until rsJet.EOF

 .AddItem Trim(rsJet(“LastName”))

 ‘move the recordset to the next row

 rsJet.MoveNext

 Loop

 ‘select the first item in the combo box

 .ListIndex = 0

 ‘close recordset

 rsJet.Close

 End If

 End With

 ‘close database

 dbJet.Close

 ‘close workspace

 wrkJet.Close

 ‘release objects

 Set rsJet = Nothing

NOTES

Self-Instructional
Material 49

Lab: Visual Basic
Programming

 Set dbJet = Nothing

 Set wrkJet = Nothing

End Sub

Add the following code to the Private SubcmdGetDataODBCDirect
_Click() event.

Private Sub cmdGetDataODBCDirect_Click()

 Dim wrkJet As DAO.Workspace, wrkODBC As DAO.Workspace

 Dim conODBCDirect As DAO.Connection

 Dim rsODBCDirect As DAO.Recordset

 Dim strConn As String

 ‘connection string for

strConn = “ODBC;DATABASE=employee_records;
UID=admin;PWD=sql;DSN=employee”

 ‘Open ODBCDirect workspace

 Set wrkODBC = CreateWorkspace(“”, “admin”, “”, dbUseODBC)

 ‘Open ODBCDirect connection

 Set conODBCDirect = wrkODBC.OpenConnection(“”, , ,
strConn)

 ‘Open ODBCDirect dynamic recordset

 Set rsODBCDirect = conODBCDirect.OpenRecordset(“SELECT
LastName FROM Employees”, dbOpenDynamic)

 With cboLastNameODBCDirect

 If rsODBCDirect.EOF And rsODBCDirect.BOF Then

 ‘no data - disable combo box

 .Enabled = False

 Else

 ‘clear the combo box

 .Clear

 ‘move the recordset to the first row

 rsODBCDirect.MoveFirst

 Do Until rsODBCDirect.EOF

 .AddItem Trim(rsODBCDirect(“LastName”))

 ‘move the recordset to the next row

 rsODBCDirect.MoveNext

 Loop

 ‘select the first item in the combo box

 .ListIndex = 0

Lab: Visual Basic
Programming

NOTES

Self-Instructional
50 Material

 ‘close recordset

 rsODBCDirect.Close

 End If

 End With

 ‘close workspace

 wrkODBC.Close

 ‘release objects

 Set rsODBCDirect = Nothing

 Set wrkODBC = Nothing

 Set conODBCDirect = Nothing

End Sub

3. Modify strLocation to reflect the location of the Northwind database on
your computer or use another .mdb database and modify Set dbJet =
wrkJet.OpenDatabase(strLocation & “Northwind.mdb”) to reflect the name
of the database.

4. Modify strConn to reflect the DSN name, password, and UID of a remote
database.

5. Modify the query in Set rsODBCDirect = conODBCDirect.OpenRecordset
(“SELECT LastName FROM Employees”, dbOpenDynamic) to reflect
the query you’d like to run.

6. Press [Ctrl][F5] to run the project.

7. Click the Get Data Jet button and the Get Data ODBC Direct button to
obtain data using Microsoft Jet and ODBCDirect, respectively.

8. You will observe a screen as shown below:

Set DAO properties for DAO objects

Refer to the object in the DAO hierarchy to set a property that is defined by the
Access database engine. The easiest and fastest way of doing that is to create
object variables that represent the different objects require work with, and refer
to the object variables in subsequent steps in your code. Consider the following
example code to create a new TableDef object and sets its Name property.

Dim dbs As DAO.Database

Dim tdf As DAO.TableDef

NOTES

Self-Instructional
Material 51

Lab: Visual Basic
Programming

Set dbs = CurrentDb

Set tdf = dbs.CreateTableDef

tdf.Name = “Contacts”

The following table provides some guidelines for determining the setting of
the Type property.

If the property setting is The Type property setting should be
A string dbText
True / False dbBoolean
An integer dbInteger

The following table lists some Microsoft Access-defined properties that

apply to DAO objects.

DAO object Microsoft Access-defined properties
Database AppTitle, AppIcon, StartupShowDBWindow,

StartupShowStatusBar, AllowShortcutMenus, AllowFullMenus,
AllowBuiltInToolbars, AllowToolbarChanges,
AllowBreakIntoCode, AllowSpecialKeys, Replicable,
ReplicationConflictFunction

SummaryInfo Container Title, Subject, Author, Manager, Company, Category, Keywords,
Comments, Hyperlink Base (See the Summary tab of the
DatabaseName Properties dialog box, available by selecting
Database Properties on the File menu.)

UserDefined Container

(See the Summary tab of the DatabaseName Properties dialog box,
available by selecting Database Properties on the File menu.)

TableDef DatasheetBackColor, DatasheetCellsEffect, DatasheetFontHeight,
DatasheetFontItalic, DatasheetFontName,
DatasheetFontUnderline, DatasheetFontWeight,
DatasheetForeColor, DatasheetGridlinesBehavior,
DatasheetGridlinesColor, Description, FrozenColumns,
RowHeight, ShowGrid

QueryDef DatasheetBackColor, DatasheetCellsEffect, DatasheetFontHeight,
DatasheetFontItalic, DatasheetFontName,
DatasheetFontUnderline, DatasheetFontWeight,
DatasheetForeColor, DatasheetGridlinesBehavior,
DatasheetGridlinesColor, Description, FailOnError,
FrozenColumns, LogMessages, MaxRecords, RecordLocks,
RowHeight, ShowGrid, UseTransaction

Field Caption, ColumnHidden, ColumnOrder, ColumnWidth,
DecimalPlaces, Description, Format, InputMask

Program 3.6: To create a new Database object and opens an existing Database
object in the default Workspace objects. Then it enumerates the Database collection
and the Properties collection of each Database object.

Sub DatabaseObjectX()

 Dim wrkAcc As Workspace

 Dim dbsNorthwind As Database

 Dim dbsNew As Database

 Dim dbsLoop As Database

 Dim prpLoop As Property

Lab: Visual Basic
Programming

NOTES

Self-Instructional
52 Material

Set wrkAcc = CreateWorkspace(“AccessWorkspace”, “admin”, _

 “”, dbUseJet)

 ‘ Make sure there isn’t already a file with the name of

 ‘ the new database.

 If Dir(“NewDB.mdb”) <> “” Then Kill “NewDB.mdb”

 ‘ Create a new database with the specified

 ‘ collating order.

 Set dbsNew = wrkAcc.CreateDatabase(“NewDB.mdb”, _

 dbLangGeneral)

 Set dbsNorthwind = wrkAcc.OpenDatabase(“Northwind.mdb”)

 ‘ Enumerate the Databases collection.

 For Each dbsLoop In wrkAcc.Databases

 With dbsLoop

 Debug.Print “Properties of “ & .Name

 ‘ Enumerate the Properties collection of each

 ‘ Database object.

 For Each prpLoop In .Properties

 If prpLoop <> “” Then Debug.Print “ “ & _

 prpLoop.Name & “ = “ & prpLoop

 Next prpLoop

 End With

 Next dbsLoop

 dbsNew.Close

 dbsNorthwind.Close

 wrkAcc.Close

 End Sub

This example uses CreateDatabase to create a new, encrypted
Database object.

Sub CreateDatabaseX()

 Dim wrkDefault As Workspace

 Dim dbsNew As DATABASE

 Dim prpLoop As Property

 ‘ Get default Workspace.

 Set wrkDefault = DBEngine.Workspaces(0)

NOTES

Self-Instructional
Material 53

Lab: Visual Basic
Programming

 ‘ Make sure there isn’t already a file with the name of
the new database.

 If Dir(“NewDB.mdb”) <> “” Then Kill “NewDB.mdb”

 ‘ Create a new encrypted database with the specified

 ‘ collating order.

 Set dbsNew = wrkDefault.CreateDatabase(“NewDB.mdb”, _

 dbLangGeneral, dbEncrypt)

 With dbsNew

 Debug.Print “Properties of “ & .Name

 ‘ Enumerate the Properties collection of the new

 ‘ Database object.

 For Each prpLoop In .Properties

 If prpLoop <> “” Then Debug.Print “ “ & _

 prpLoop.Name & “ = “ & prpLoop

 Next prpLoop

 End With

 dbsNew.Close

 End Sub

Why Use DAO?

Visual Basic programmers highly recommend ADO as their preferred object model
for accessing databases. Although ADO is an excellent model with its own unique
benefits, in the context of Access databases, it doesn’t have the benefit of native
database connectivity, which is where DAO has the distinct advantage.

Applications written in other programming languages, such as Visual Basic,
Delphi, and the like, must explicitly connect to the data source they intend to
manipulate, and they must do so every time they need to manipulate the data or
underlying schema. That’s because, unlike Access, these applications do not have
an inherent connection to the data source. When used in Access, DAO enables
you to manipulate data and schema through an implicit connection that Access
maintains to whichever Access database engine, ODBC, or ISAM data source it
happens to be connected to.

Active Data Objects ADO and OLEDB

Database Access

Applications access the database to retrieve and display the data stored and also
to insert, update and delete data in the database. Microsoft ActiveX Data
Objects.NET (ADO.NET) is a model that is used to access and update data from
.NET applications.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
54 Material

ADO.NET Object Model

It is nothing but the structured process flow through various components. Data
provider is used to retrieve the data residing in the database. The object model
can be pictorially described as given below:

An application accesses data either through a dataset or a data reader.

1. Datasets store data in a disconnected cache and the application retrieves
data from it.

2. Data readers provide data to the application in a read-only and forward-
only mode.

Connecting to a Database

There are two two types of Connection classes in the .NET Framework.

1. SqlConnection: It is designed for connecting to Microsoft SQL Server.

2. OleDbConnection: It is designed for connecting to a wide range of
databases, like Microsoft Access and Oracle.

Program 3.7: To illustrate the connection with the database.

The Customers table is stored in Microsoft SQL Server in a database named as
testDB.

Apply the following steps to connect with the database:

1. Select TOOLS ’! Connect to Database

NOTES

Self-Instructional
Material 55

Lab: Visual Basic
Programming

2. Select the server name and database name in the Add Connection dialog
box.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
56 Material

3. Click on the Test Connection button to check for the connection succeeded.

4. Add a DataGridView on the form

5. Click on the Choose Data Source combo box.

6. Click on the Add Project Data Source link. This will open the Data Source
Configuration Wizard.

NOTES

Self-Instructional
Material 57

Lab: Visual Basic
Programming

7. Select Database as the data source type

8. Choose DataSet as the database model.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
58 Material

9. Choose the connection already set up.

10. Save the connection string.

NOTES

Self-Instructional
Material 59

Lab: Visual Basic
Programming

11. Choose the database object that is Customers table in our example and
then click the Finish button.

12. Select the Preview Data link to see the data in the Results grid as shown
below.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
60 Material

It will produce the following output when you run the application using Start
button available at the Microsoft Visual Studio tool bar.

OLE DB Connection Manager

OLE DB (Object Linking and Embedding, Database) is an API designed by
Microsoft. It allows users to access a variety of data sources in a uniform manner.
OLE DB connection managers are the most popular between all SSIS connection
managers.

The following window appears, when you click on Add OLE DB connection
in the context menu.

NOTES

Self-Instructional
Material 61

Lab: Visual Basic
Programming

All previously defined connections are listed with their properties in this
window. You have to click on New button to add a new connection. The following
screenshot shows the main OLE DB connection configuration form.

When, we click on the Provider drop-down list, all available data sources
providers will be displayed as shown below:

Lab: Visual Basic
Programming

NOTES

Self-Instructional
62 Material

Following are the main OLE DB connection properties:

1. Provider: It is used to connect to the data source.

2. Server name: The Server that you want to connect with.

3. Authentication type: It includes security parameters used to establish the
connection.

4. Database name: The database name that we want to connect with.

Generally, OLE DB connection manager is used in all tasks and components
used to connect to an external database such as:

 Execute SQL Task

 Execute T-SQL Task

 OLE DB Source

 OLE DB Destination

 OLE DB command

 Look up Transformation

 ODBC connection manager

ODBC (Open Database Connectivity) is a standard API used to access
database.It provides access only to relational databases which are used by OLE
DB to access SQL-based data sources.

ODBC SSIS connection managers are also popular which are used when
data sources are defined as DSN (Database Source Name) in the operating system.

Right-click inside the connection manager tab panel to add an ODBC
connection manager. Click on New Connection button as shown below:

NOTES

Self-Instructional
Material 63

Lab: Visual Basic
Programming

This form contains all ODBC connections added earlier. Click on New
button to add a new one. The following screenshot shows the ODBC connection
manager configuration form.

When, we click on the Provider drop-down list, all available data sources
providers will be displayed as shown below.

Connection should be closed and release the resources once the use of
database is over. The Close() method is used to close the Database Connection.
It rolls back any pending transactions and releases the connection from the database
connected by the ODBC Data Provider. The code for ADO.NET ODBC
connection will be:

Imports System.Data.Odbc

Public Class Form1

 Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

 Dim connetionString As String

 Dim cnn As OdbcConnection

 connetionString = “Driver={Microsoft Access Driver
(*.mdb)};DBQ=yourdatabasename.mdb;”

 cnn = New OdbcConnection(connetionString)

 Try

Lab: Visual Basic
Programming

NOTES

Self-Instructional
64 Material

 cnn.Open()

 MsgBox(“Connection Open ! “)

 cnn.Close()

 Catch ex As Exception

 MsgBox(“Can not open connection ! “)

 End Try

 End Sub

End Class

BLOCK 4

This block will cover the following topics:

1. Connect with the database

2. Using SQL server and DataReaders

3. Retrieving, inserting, updating and deleting the records in the database

Connecting Databases Using ADO.NET in VB.NET

Connecting and communicating with a database is a necessary part of any type of
application. In other words, you can say an application requires accessing the
database. ADO.NET (ActiveX Database Objects.NET) is a model provided by
the .NET framework that helps in retrieving, inserting, updating, or deleting data
from a database.

VB .NET uses ADO .NET (Active X Data Object) for data access and
manipulation protocol that also helps us to work with data on the Internet.

ADO.NET Data Architecture

Connection

It is used for establishing a connection between database and application.
SqlConnection class is used for the MS-SQL database. OleDBConnectionclass
is used for a database like an oracle and MS-Access.

Command

It is used to execute a command (Query). SqlCommand class is used for the
MS-SQL database. OleDBCommand class is used for a database like an oracle
and MS-Access.

DataSet

It provides a copy of the original database tables.

DataAdapter

It is used to retrieve data from the database and update DataSet.
SqlDataAdapter class is used for the MS-SQL database. OleDBDataAdapter
class is used for a database like an oracle and MS-Access.

NOTES

Self-Instructional
Material 65

Lab: Visual Basic
Programming

Data Access with Server Explorer

VB allows us to work with db in two ways i.e. visually and code. Server Explorer
enables us to work with connections across different data sources visually. The
window that is displayed is the Server Explorer that helps us to create and examine
data connections. Server Explorer can be viewed by selecting View’!Server
Explorer from the main menu or by pressing Ctrl+Alt+S on the keyboard as shown
below.

We will work with SQL Server, the default provider for .NET. We’ll be
displaying data from Customers table in sample Northwind database in SQL Server.
It requires establishing a connection to this database. You need to right-click on
the Data Connections icon in Server Explorer and select Add Connection item
that opens the Data Link Properties dialog. It allows us to enter the name of the
server with which we want to work along with login name and password as shown
below.

Now select Northwind database from the list. After that click on the Test
Connection tab, If the connection is successful, a message “Test Connection
Succeeded” is displayed. Click OK and close the Data Link Properties or add
connection when connection to the database is set. It displays the Tables, Views
and Stored Procedures in that Northwind sample database when you expand the

Lab: Visual Basic
Programming

NOTES

Self-Instructional
66 Material

connection node that is (“+” sign). Expanding the Tables node will display all the
tables available in the database.

We will work with Customers table to display its data in our example. Now,
drag Customers table onto the form from the Server Explorer. It creates
SQLConnection1 and SQLDataAdapter1 objects that are the data connection
and data adapter objects used to work with data. They are displayed on the
component tray. After that, generate the dataset which holds data from the data
adapter. To do that select Data’!Generate DataSet from the main menu or rightclick
SQLDataAdapter1 object and select generate DataSet menu. It will displays the
generate Dataset dialogbox.

Select the radio button with New option to create a new dataset once the
dialogbox is displayed. Make sure Customers table is checked and click OK. It
adds a dataset, DataSet to the component tray. After that, drag a DataGrid from
toolbox to display Customers table. Set the data grid’s DataSource property to
DataSet and it’s DataMember property to Customers. Next, we need to fill the
dataset with data from the data adapter. The code for that is given below:

Private Sub Form1_Load(ByVal sender As System.Object,

ByVal e As System.EventArgs)_

Handles MyBase.Load

DataSet.Clear()

SqlDataAdapter1.Fill(DataSet)

‘filling the dataset with the dataadapter’s fill method

End Sub

The output of the above code is given below:

Customers table is displayed in the data grid once the application is executed.
That’s one of the simplest ways of displaying data using the Server Explorer window.

NOTES

Self-Instructional
Material 67

Lab: Visual Basic
Programming

Microsoft Access and Oracle Database

You need to select Microsoft OLE DB Provider for Oracle from the Provider tab
in the DataLink dialog when working with Oracle. The process is same when
working with Oracle or MS Access but has some minor changes. It requires
appropriate Username and password.

Using DataReaders, SQL Server

Here, we will work with ADO .NET objects in code to create connections and
read data by using the data reader. The namespace that requires to be imported
when working with SQL Connections is System.Data.SqlClient. Here, we will
check that how to connect by using our own connection objects. We will also
check how to use the command object.

1. Working with SQL Server

The classes used while working with SQL server are discussed below:

(a) The SqlConnection Class: This class shows the connection to SQL Server
data source. We will use OleDB connection object when working with
databases instead of SQL Server. Sqlconnections is 70% faster than OleDb
connections.

(b) The SqlCommand Class: This class represents a SQL statement or stored
procedure for use in a database with SQL Server.

(c) The SqlDataAdapter Class: This class represents a bridge between SQL
Server database and dataset. It includes the Select, Insert, Update and
Delete commands for loading and updating the data.

(d) The SqlDataReader Class: This class creates a data reader to be used
with SQL Server.

2. DataReaders

A DataReader is a lightweight object which provides forward-only, read-only
data in a very efficient and fast way. Data access with DataReader is read-only, if
we cannot make any changes (update) to data and forward-only, which means we
cannot go back to the previous record which was accessed. A DataReader requires
the use of an active connection for the entire time. We can instantiate a DataReader
by making a call to a Command object’s ExecuteReader command. When the

Lab: Visual Basic
Programming

NOTES

Self-Instructional
68 Material

DataReader is first returned, it is positioned before the first record of the result
set. To make the first record available, we need to call the Read method. If a
record is available, then Read method moves the DataReader to next record and
returns True. If a record is not available the Read method returns False.

Program 4.1: To retrieve data using Select command (to display data from
Discounts table in Pubs sample database).

Imports System.Data.SqlClient

Public Class Form1 Inherits System.Windows.Forms.Form

Dim myConnection As SqlConnection

Dim myCommand As SqlCommand

Dim dr As New SqlDataReader()

‘declaring the objects

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As

System.EventArgs)_

Handles MyBase.Load

myConnection = New

SqlConnection(“server=localhost;uid=sa;pwd=;database=pubs”)

‘establishing connection. you need to provide password
for sql server

Try

myConnection.Open()

‘opening the connection

myCommand = New SqlCommand(“Select * from discounts”,

myConnection)

‘executing the command and assigning it to connection

dr = myCommand.ExecuteReader()

While dr.Read()

‘reading from the datareader

MessageBox.Show(“discounttype” & dr(0).ToString())

MessageBox.Show(“stor_id” & dr(1).ToString())

MessageBox.Show(“lowqty” & dr(2).ToString())

MessageBox.Show(“highqty” & dr(3).ToString())

MessageBox.Show(“discount” & dr(4).ToString())

‘displaying the data from the table

End While

dr.Close()

myConnection.Close()

NOTES

Self-Instructional
Material 69

Lab: Visual Basic
Programming

Catch e As Exception

End Try

End Sub

End Class

The above code displays records from discounts table in MessageBoxes.

Retrieving records with a Console Application

Imports System.Data.SqlClient

Imports System.Console

Module Module1

Dim myConnection As SqlConnection

Dim myCommand As SqlCommand

Dim dr As SqlDataReader

Sub Main()

Try

myConnection = New

SqlConnection(“server=localhost;uid=sa;pwd=;database=pubs”)

‘you need to provide password for sql server

myConnection.Open()

myCommand = New SqlCommand(“Select * from discounts”,

myConnection)

dr = myCommand.ExecuteReader

Do

While dr.Read()

WriteLine(dr(0))

WriteLine(dr(1))

WriteLine(dr(2))

WriteLine(dr(3))

WriteLine(dr(4))

‘ writing to console

End While

Loop While dr.NextResult()

Catch

End Try

dr.Close()

myConnection.Close()

End Sub

End Module

Lab: Visual Basic
Programming

NOTES

Self-Instructional
70 Material

Inserting Records

Example 4.2: To insert a Record into the Jobs table in Pubs sample database.

Imports System.Data.SqlClient

Public Class Form2 Inherits System.Windows.Forms.Form

Dim myConnection As SqlConnection

Dim myCommand As SqlCommand

Dim ra as Integer

‘integer holds the number of records inserted

Private Sub Form2_Load(ByVal sender As System.Object,
ByVal e_

As System.EventArgs) Handles MyBase.Load

End Sub

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e_As System.EventArgs) Handles Button1.Click

myConnection = New SqlConnection(“server=localhost;
uid=sa;pwd=;database=pubs”)

‘you need to provide password for sql server

myConnection.Open()

myCommand = New SqlCommand(“Insert into Jobs values 12,’IT

Manager’,100,300,_

myConnection)

ra=myCommand.ExecuteNonQuery()

MessageBox.Show(“New Row Inserted” & ra)

myConnection.Close()

End Sub

End Class

Deleting a Record

Example 4.3: For deleting a record, we will use Authors table in Pubs sample
database to work with this code. Drag a button onto the form and place the
following code.

Imports System.Data.SqlClient

Public Class Form3 Inherits System.Windows.Forms.Form

Dim myConnection As SqlConnection

Dim myCommand As SqlCommand

Dim ra as Integer

Private Sub Form3_Load(ByVal sender As System.Object,
ByVal e_

As System.EventArgs) Handles MyBase.Load

End Sub

NOTES

Self-Instructional
Material 71

Lab: Visual Basic
Programming

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e_

As System.EventArgs) Handles Button1.Click

myConnection = New

SqlConnection(“server=localhost;uid=sa;pwd=;database=pubs”)

‘you need to provide password for sql server

myConnection.Open()

myCommand = New SqlCommand(“Delete from Authors where

city=’Oakland’”,_

myConnection)

‘since no value is returned we use ExecuteNonQuery

ra=myCommand.ExecuteNonQuery()

MessageBox.Show(“Records affected” & ra)

myConnection.Close()

End Sub

End Class

Updating Records

Example 4.4: For updating a record, we will update a row in Authors table. Drag
a button onto the form and write the following code.

Imports System.Data.SqlClient

Public Class Form4 Inherits System.Windows.Forms.Form

Dim myConnection As SqlConnection

Dim myCommand As SqlCommand

Dim ra as Integer

Private Sub Form4_Load(ByVal sender As System.Object,
ByVal e_

As System.EventArgs) Handles MyBase.Load

End Sub

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e_

As System.EventArgs) Handles Button1.Click

myConnection = New

SqlConnection(“server=localhost;uid=sa;pwd=;database=pubs”)

‘you need to provide password for sql server

myConnection.Open()

myCommand = New SqlCommand(“Update Authors Set
city=’Oakland’

where city=_

‘San Jose’ “,myConnection)

Lab: Visual Basic
Programming

NOTES

Self-Instructional
72 Material

ra=myCommand.ExecuteNonQuery()

MessageBox.Show(“Records affected” & ra)

myConnection.Close()

End Sub

End Class

Using OleDb Provider

The classes of the OleDb provider with which we work are as follows:

1. The OleDbConnection Class: The OleDbConnection class allows a
connection to OleDb data source. OleDbconnections are used to connect
to most databases.

2. The OleDbCommand Class: The OleDbCommand class shows a SQL
statement or stored procedure which is to be executed in a database by an
OLEDB provider.

3. The OleDbDataAdapter Class: The OleDbDataAdapter class represents
as an intermediate between OleDb data source and datasets. We use the
Select, Insert, Delete and Update commands for loading and updating the
data.

4. The OleDbDataReader Class: The OleDbDataReader class creates a
datareader for use with an OleDb data provider. The data is read as forward-
only stream which means that data is read sequentially, one row after another
not allowing you to choose a row you want or going backwards. It is used
to read a row of data from the database.

Program 4.5: To retrieve the records. In the code below, we are working with
Emp table in Oracle.

Imports System.Data.OleDB

Public Class Form1 Inherits System.Windows.Forms.Form

Dim myConnection As OleDbConnection

Dim myCommand As OleDbCommand

Dim dr As New OleDbDataReader()

‘declaration

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As

System.EventArgs)_

Handles MyBase.Load

myConnection = New OleDbConnection_

(“Provider=MSDAORA.1;UserID=scott;password=tiger;
database=ora”)

‘MSDORA is the provider when working with Oracle

Try

NOTES

Self-Instructional
Material 73

Lab: Visual Basic
Programming

myConnection.Open()

‘opening the connection

myCommand = New OleDbCommand(“Select * from emp”,

myConnection)

‘executing the command and assigning it to connection

dr = myCommand.ExecuteReader()

While dr.Read()

‘reading from the datareader

MessageBox.Show(“EmpNo” & dr(0))

MessageBox.Show(“EName” & dr(1))

MessageBox.Show(“Job” & dr(2))

MessageBox.Show(“Mgr” & dr(3))

MessageBox.Show(“HireDate” & dr(4))

‘displaying data from the table

End While

dr.Close()

myConnection.Close()

Catch e As Exception

End Try

End Sub

End Class

The above code displays first 5 columns from the Emp table in Oracle.

Inserting Records

Program 4.6: Drag a Button from the toolbox onto the Form. When this Button
is clicked the values specified in code will be inserted into the Emp table.

Imports System.Data.OleDb

Public Class Form2 Inherits System.Windows.Forms.Form

Dim myConnection As OleDbConnection

Dim myCommand As OleDbCommand

Dim ra as Integer

‘integer holds the number of records inserted

Private Sub Form2_Load(ByVal sender As System.Object,
ByVal e As_

System.EventArgs) Handles MyBase.Load

End Sub

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As _

Lab: Visual Basic
Programming

NOTES

Self-Instructional
74 Material

System.EventArgs) Handles Button1.Click

myConnection = New

OleDbConnection(“”Provider=MSDAORA.1;User_
ID=scott;password=tiger;database=ora”

)

Try

myConnection.Open()

myCommand = New OleDbCommand(“Insert into emp values
12,’Ben’,’Salesman’,300

12-10-2001,3000,500,10 “, myConnection)

‘emp table has 8 columns. You can work only with the
columns you want

ra=myCommand.ExecuteNonQuery()

MessageBox.Show(“Records Inserted” & ra)

myConnection.Close()

Catch

End Try

End Sub

End Class

Updating Records

Program 4.7: Drag a Button on a new form and write the following code.

Imports System.Data.OleDb

Public Class Form4 Inherits System.Windows.Forms.Form

Dim myConnection As OleDbConnection

Dim myCommand As OleDbCommand

Dim ra as Integer

Private Sub Form4_Load(ByVal sender As System.Object,
ByVal e As_

System.EventArgs) Handles MyBase.Load

End Sub

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e_

As System.EventArgs) Handles Button1.Click

Try

myConnection = New OleDbConnection(“”Provider=
MSDAORA.1;User_

ID=scott;password=tiger;database=ora”)

myConnection.Open()

NOTES

Self-Instructional
Material 75

Lab: Visual Basic
Programming

myCommand = New OleDbCommand(“Update emp Set DeptNo=65

where DeptNo=793410",_ myConnection)

ra=myCommand.ExecuteNonQuery()

MessageBox.Show(“Records Updated” & ra)

myConnection.Close()

Catch

End Try

End Sub

End Class

Deleting Records

Program 4.8: Drag a Button on a new form and write the following code.

Imports System.Data.OleDb

Public Class Form3 Inherits System.Windows.Forms.Form

Dim myConnection As OleDbConnection

Dim myCommand As OleDbCommand

Dim ra as Integer

Private Sub Form3_Load(ByVal sender As System.Object,
ByVal e As_

System.EventArgs) Handles MyBase.Load

End Sub

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e_

As System.EventArgs) Handles Button1.Click

Try

myConnection = New OleDbConnection(“”Provider=MSDAORA.
1;User_

ID=scott;password=tiger;database=ora”)

myConnection.Open()

myCommand = New OleDbCommand(“Delete from emp where

DeptNo=790220",_

myConnection)

ra=myCommand.ExecuteNonQuery()

MessageBox.Show(“Records Deleted” & ra)

myConnection.Close()

Catch

End Try

End Sub

End Class

Lab: Visual Basic
Programming

NOTES

Self-Instructional
76 Material

Data Access using MSAccess

Program 4.9: In this program, create a database named Emp in Microsoft Access
in the C drive of your computer. In the Emp database, create a table, Table1 with
EmpNo, EName and Department as columns, insert some values in the table and
close it. Drag three TextBoxes and a Button. The following code will assume that
TextBox1 is for EmpNo, TextBox2 is for EName and TextBox3 is for Department.
Our intention is to retrieve data from Table1 in the Emp Database and display the
values in these TextBoxes without binding, when the Button is clicked.

Imports System.Data.OleDb

Public Class Form1 Inherits System.Windows.Forms.Form

Dim cn As OleDbConnection

Dim cmd As OleDbCommand

Dim dr As OleDbDataReader

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e as _

System.EventArgs) Handles MyBase.Load

End Sub

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As_

System.EventArgs) Handles Button1.Click

Try

cn = New OleDbConnection(“Provider=Microsoft.
Jet.OLEDB.4.0;_

Data Source=C:\emp.mdb;”)

‘provider to be used when working with access database

cn.Open()

cmd = New OleDbCommand(“select * from table1”, cn)

dr = cmd.ExecuteReader

While dr.Read()

TextBox1.Text = dr(0)

TextBox2.Text = dr(1)

TextBox3.Text = dr(2)

‘ loading data into TextBoxes by column index

End While

Catch

End Try

dr.Close()

cn.Close()

End Sub

End Class

NOTES

Self-Instructional
Material 77

Lab: Visual Basic
Programming

When you run the code and click the Button, records from Table1 of the
Emp database will be displayed in the TextBoxes.

Program 4.10: Write a code for retrieving records with a Console Application.

Imports System.Data.OleDb

Imports System.Console

Module Module1

Dim cn As OleDbConnection

Dim cmd As OleDbCommand

Dim dr As OleDbDataReader

Sub Main()

Try

cn = New OleDbConnection(“Provider=Microsoft.
Jet.OLEDB.4.0;Data

Source=C:\emp.mdb;_

Persist Security Info=False”)

cn.Open()

cmd = New OleDbCommand(“select * from table1”, cn)

dr = cmd.ExecuteReader

While dr.Read()

WriteLine(dr(0))

WriteLine(dr(1))

WriteLine(dr(2))

‘writing to console

End While

Catch

End Try

dr.Close()

cn.Close()

End Sub

End Module

Code for Inserting a Record

Imports System.Data.OleDb

Public Class Form2 Inherits System.Windows.Forms.Form

Dim cn As OleDbConnection

Dim cmd As OleDbCommand

Dim dr As OleDbDataReader

Dim icount As Integer

Dim str As String

Lab: Visual Basic
Programming

NOTES

Self-Instructional
78 Material

Private Sub Form2_Load(ByVal sender As System.Object,
ByVal e As_

System.EventArgs) Handles MyBase.Load

End Sub

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As_

System.EventArgs) Handles Button2.Click

Try

cn = New OleDbConnection(“Provider=Microsoft.
Jet.OLEDB.4.0;Data

Source=C:\emp.mdb;”)

cn.Open()

str = “insert into table1 values(“ & CInt(TextBox1.Text)
& “,’” &

TextBox2.Text & “‘,’” &_

TextBox3.Text & “‘)”

‘string stores the command and CInt is used to convert
number to string

cmd = New OleDbCommand(str, cn)

icount = cmd.ExecuteNonQuery

MessageBox.Show(icount)

‘displays number of records inserted

Catch

End Try

cn.Close()

End Sub

End Class

BLOCK 5
SIMPLE APPLICATION DEVELOPMENT

This block will cover the development of following simple applications:

1. Library information system

2. Students marksheet processing

3. Telephone directory maintenance

4. Gas booking and delivering

5. Electricity bill processing

6. Bank Transaction

NOTES

Self-Instructional
Material 79

Lab: Visual Basic
Programming

7. Pay roll processing

8. Personal information system

9. Question database and conducting Quiz

10. Personal diary

1. Library Information System

Add Books:

Public Class AddBooks

 Public NameFrm, NameTo As String

 Private Sub Button9_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button9.Click

 Me.Close()

 End Sub

 Private Sub AddBooks_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

 Call generateyear()

 Call disablethem()

 Call readData()

 Call GroupID_Combo()

 End Sub

 Sub GroupID_Combo()

 Try

 If objcon.State = ConnectionState.Closed Then
objcon.Open()

 com = New OleDb.OleDbCommand(“Select GroupID from GroupD”,
objcon)

 dr = com.ExecuteReader

 While dr.Read

 ComboBox1.Items.Add(dr.Item(0))

 End While

 dr.Close()

 objcon.Close()

 Catch ex As Exception

 End Try

 End Sub

 Sub generateyear()

 Dim YearNow As Integer

Lab: Visual Basic
Programming

NOTES

Self-Instructional
80 Material

 YearNow = Int(My.Computer.Clock.LocalTime.Year.ToString)

 Dim a, b, c As Integer

 a = YearNow - 5

 b = YearNow

 For c = a To b

 ComboBox2.Items.Add(c)

 Next

 End Sub

 Private Sub ComboBox1_LostFocus(ByVal sender As Object,
ByVal e As System.EventArgs) Handles ComboBox1.LostFocus

 ComboBox1.Text = ComboBox1.Text.ToUpper()

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

 ComboBox3.Text = “Available”

 Call enablethem()

End Sub

 Private Sub TextBox2_LostFocus(ByVal sender As Object,
ByVal e As System.EventArgs) Handles TextBox2.LostFocus

 NameFrm = TextBox2.Text

 Call Sentence()

 TextBox2.Text = NameTo

 End Sub

 Sub disablethem()

 ‘TextBox1.Enabled = False

 TextBox2.Enabled = False

 TextBox3.Enabled = False

 ComboBox1.Enabled = False

 TextBox4.Enabled = False

 TextBox5.Enabled = False

 TextBox6.Enabled = False

 ComboBox2.Enabled = False

 ComboBox3.Enabled = False

 End Sub

 Sub enablethem()

 TextBox1.Enabled = True

 TextBox2.Enabled = True

 TextBox3.Enabled = True

NOTES

Self-Instructional
Material 81

Lab: Visual Basic
Programming

 ComboBox1.Enabled = True

 TextBox4.Enabled = True

 TextBox5.Enabled = True

 TextBox6.Enabled = True

 ComboBox2.Enabled = True

 ComboBox3.Enabled = True

 TextBox1.Clear()

 TextBox2.Clear()

 TextBox3.Clear()

 TextBox4.Clear()

 TextBox5.Clear()

 TextBox6.Clear()

 ComboBox1.Text = “”

 ComboBox2.Text = “”

 ComboBox3.Text = “”

 End Sub

 Sub Sentence()

 Dim a, b As Integer

 a = NameFrm.Length

 NameTo = “”

 For b = 0 To a - 1

 If b = 0 Then

 If Char.IsLower(NameFrm(0)) Then

 NameTo = Char.ToUpper(NameFrm(0))

 Else

 NameTo = NameFrm(0)

 End If

 Else

 If NameFrm(b - 1) = “ “ Then

 NameTo = NameTo + Char.ToUpper(NameFrm(b))

 Else

 NameTo = NameTo + NameFrm(b)

 End If

 End If

 Next

 End Sub

 Private Sub TextBox3_LostFocus(ByVal sender As Object,
ByVal e As System.EventArgs) Handles TextBox3.LostFocus

Lab: Visual Basic
Programming

NOTES

Self-Instructional
82 Material

 NameFrm = TextBox3.Text

 Call Sentence()

 TextBox3.Text = NameTo

 End Sub

 Private Sub TextBox3_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TextBox3.TextChanged

 End Sub

 Private Sub TextBox4_LostFocus(ByVal sender As Object,
ByVal e As System.EventArgs) Handles TextBox4.LostFocus

 NameFrm = TextBox4.Text

 Call Sentence()

 TextBox4.Text = NameTo

 End Sub

 Private Sub TextBox4_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TextBox4.TextChanged

End Sub

 Private Sub TextBox5_LostFocus(ByVal sender As Object,
ByVal e As System.EventArgs) Handles TextBox5.LostFocus

 NameFrm = TextBox5.Text

 Call Sentence()

 TextBox5.Text = NameTo

 End Sub

 Private Sub TextBox5_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TextBox5.TextChanged

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

 If TextBox1.Text = “” Then

 MsgBox(“Please enter the Book ID!”, 0, “”)

 Else

 Try

If objcon.State = ConnectionState.Closed Then objcon.Open()

 com = New OleDb.OleDbCommand(“INSERT INTO Books VALUES(‘“
& TextBox1.Text & “‘,’” & ComboBox1.Text & “‘,’” & TextBox2.Text
& “‘,’” & TextBox3.Text & “‘,’” & TextBox4.Text & “‘,’” &
ComboBox2.Text & “‘,’” & TextBox5.Text & “‘,’” & TextBox6.Text
& “‘,’” & ComboBox3.Text & “‘)”, objcon)

 com.ExecuteNonQuery()

 Call readData()

NOTES

Self-Instructional
Material 83

Lab: Visual Basic
Programming

 MsgBox(“Saved successfully”, 0, “SUCCESS”)

 objcon.Close()

 Catch ex As Exception

 MsgBox(ex.Message, 0, “”)

 End Try

 End If

 End Sub

 Sub readData()

 ListView1.Clear()

ListView1.Columns.Add(“BOOK ID”, 90,
HorizontalAlignment.Center)

ListView1.Columns.Add(“GROUP ID”, 90,
HorizontalAlignment.Center)

ListView1.Columns.Add(“BOOK NAME”, 310,
HorizontalAlignment.Center)

ListView1.Columns.Add(“PUBLISHER”, 90,
HorizontalAlignment.Center)

ListView1.Columns.Add(“AUTHOR”, 90,
HorizontalAlignment.Center)

ListView1.Columns.Add(“PUBLISHING YEAR”, 130,
HorizontalAlignment.Center)

ListView1.Columns.Add(“EDITION”, 90,
HorizontalAlignment.Center)

ListView1.Columns.Add(“PRICE”, 90,
HorizontalAlignment.Center)

ListView1.Columns.Add(“STATUS”, 90,
HorizontalAlignment.Center)

 ListView1.View = View.Details

 Try

 If (objcon.State = ConnectionState.Closed) Then
objcon.Open()

 com = New OleDb.OleDbCommand(“SELECT * FROM Books “,
objcon)

 dr = com.ExecuteReader

 While dr.Read()

 Call adddatatolistview(ListView1, dr(0), dr(1), dr(2),
dr(3), dr(4), dr(5), dr(6), dr(7), dr(8))

 End While

 dr.Close()

 objcon.Close()

 Catch

Lab: Visual Basic
Programming

NOTES

Self-Instructional
84 Material

 ‘MsgBox(“Please Refresh”, MsgBoxStyle.Information, “”)

 End Try

 End Sub

 Public Sub adddatatolistview(ByVal lvw As ListView, ByVal
BookID As String, ByVal GroupID As String, ByVal BookName As
String, ByVal Publisher As String, ByVal Author As String,
ByVal PubYear As String, ByVal edi As String, ByVal pric As
String, ByVal st As String)

 Dim lv As New ListViewItem

 lvw.Items.Add(lv)

 lv.Text = BookID

 lv.SubItems.Add(GroupID)

 lv.SubItems.Add(BookName)

 lv.SubItems.Add(Publisher)

 lv.SubItems.Add(Author)

 lv.SubItems.Add(PubYear)

 lv.SubItems.Add(edi)

 lv.SubItems.Add(pric)

 lv.SubItems.Add(st)

 End Sub

 Private Sub Button8_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button8.Click

 Try

 If objcon.State = ConnectionState.Closed Then
objcon.Open()

 If MessageBox.Show(“Do you really want to delete?”,
“ARE YOU SURE”, MessageBoxButtons.YesNo) =
Windows.Forms.DialogResult.Yes Then

 com = New OleDb.OleDbCommand(“DELETE FROM Books WHERE
BookID=’” & TextBox1.Text & “‘“, objcon)

 com.ExecuteNonQuery()

 objcon.Close()

 MsgBox(“Deleted successfully”, 0, “SUCCESS”)

 End If

 Catch ex As Exception

 End Try

 End Sub

 Sub fill_list()

 com = New OleDb.OleDbCommand(“Select * from Books”,
objcon)

NOTES

Self-Instructional
Material 85

Lab: Visual Basic
Programming

 Dim dr As OleDb.OleDbDataReader

 dr = com.ExecuteReader

 dr.Read()

 While (dr.NextResult)

 End While

 End Sub

 Private Sub GroupBox1_Enter(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles GroupBox1.Enter

 End Sub

 Private Sub TextBox1_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TextBox1.TextChanged

 Dim i As Integer

 ListView1.SelectedItems.Clear()

 TextBox1.Focus()

 Try

 If Me.TextBox1.Text = “” Then

 TextBox2.Text = “”

 Else

 For i = 0 To ListView1.Items.Count - 1

 If TextBox1.Text = ListView1.Items(i).SubItems(0).Text
Then

 ComboBox1.Text = ListView1.Items(i).SubItems(1).Text

 TextBox2.Text = ListView1.Items(i).SubItems(2).Text

 TextBox3.Text = ListView1.Items(i).SubItems(3).Text

 TextBox4.Text = ListView1.Items(i).SubItems(4).Text

 ComboBox2.Text = ListView1.Items(i).SubItems(5).Text

 TextBox5.Text = ListView1.Items(i).SubItems(6).Text

 TextBox6.Text = ListView1.Items(i).SubItems(7).Text

 ComboBox3.Text = ListView1.Items(i).SubItems(8).Text

 ListView1.Items(i).Selected = True

 Exit For

 End If

 Next

 End If

 Catch

 End Try

 End Sub

Lab: Visual Basic
Programming

NOTES

Self-Instructional
86 Material

 Private Sub ListView1_SelectedIndexChanged(ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
ListView1.SelectedIndexChanged

 Dim i As Integer

 For i = 0 To ListView1.Items.Count - 1

 If ListView1.Items(i).Selected = True Then

 TextBox1.Text = ListView1.Items(i).SubItems(0).Text

 TextBox7.Clear()

 Exit For

 End If

 Next

 ListView1.Focus()

 ListView1.FullRowSelect = True

 End Sub

 Private Sub Button6_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button6.Click

 Try

 Dim i As Integer

 For i = 0 To ListView1.Items.Count - 1

 If ListView1.Items(i).Selected = True Then

 TextBox1.Text = ListView1.Items(i + 1).SubItems(0).Text

 Exit For

 End If

 Next

 ListView1.Focus()

 ListView1.FullRowSelect = True

 Catch ex As Exception

 End Try

 End Sub

 Private Sub ComboBox1_SelectedIndexChanged(ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
ComboBox1.SelectedIndexChanged

 Call GroupNameCom()

 End Sub

 Sub GroupNameCom()

 Try

NOTES

Self-Instructional
Material 87

Lab: Visual Basic
Programming

 If objcon.State = ConnectionState.Closed Then
objcon.Open()

 com = New OleDb.OleDbCommand(“Select * from GroupD”,
objcon)

 dr = com.ExecuteReader

 While dr.Read

 If dr.Item(0) = ComboBox1.Text Then

 TextBox7.Text = dr.Item(1)

 End If

 End While

 dr.Close()

 objcon.Close()

 Catch ex As Exception

 End Try

 End Sub

 Private Sub ComboBox1_TextUpdate(ByVal sender As Object,
ByVal e As System.EventArgs) Handles ComboBox1.TextUpdate

 Call GroupNameCom()

 End Sub

 Private Sub Button5_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button5.Click

 Try

 Dim i As Integer

 For i = 0 To ListView1.Items.Count - 1

 If ListView1.Items(i).Selected = True Then

 TextBox1.Text = ListView1.Items(i - 1).SubItems(0).Text

 Exit For

 End If

 Next

 ListView1.Focus()

 ListView1.FullRowSelect = True

 Catch ex As Exception

 End Try

 End Sub

End Class

Lab: Visual Basic
Programming

NOTES

Self-Instructional
88 Material

Book Details:

Public Class BookDetail

 Dim sel As Integer

 Private Sub ComboBox1_SelectedIndexChanged(ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
ComboBox1.SelectedIndexChanged

 Label1.Text = ComboBox1.Text

 Label1.Visible = True

 If Label1.Text = “STATUS” Then

 ComboBox2.Enabled = True

 ComboBox2.Visible = True

 TextBox1.Visible = False

 Else

 ComboBox2.Enabled = False

 ComboBox2.Visible = False

 TextBox1.Visible = True

 End If

 Call forselect()

 End Sub

 Sub forselect()

 If ComboBox1.Text = “BOOK ID” Then

 sel = 1

 ElseIf ComboBox1.Text = “BOOK NAME” Then

 sel = 2

 ElseIf ComboBox1.Text = “AUTHOR” Then

 sel = 3

NOTES

Self-Instructional
Material 89

Lab: Visual Basic
Programming

 ElseIf ComboBox1.Text = “STATUS” Then

 sel = 8

 End If

 End Sub

 Private Sub BookDetail_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

 ComboBox2.Visible = False

 TextBox1.Visible = False

 Label1.Visible = False

 Call readData()

 End Sub

 Sub readData()

 ListView1.Clear()

ListView1.Columns.Add(“BOOK ID”, 90,
HorizontalAlignment.Center)

ListView1.Columns.Add(“GROUP ID”, 90,
HorizontalAlignment.Center)

ListView1.Columns.Add(“BOOK NAME”, 310,
HorizontalAlignment.Center)

ListView1.Columns.Add(“PUBLISHER”, 90,
HorizontalAlignment.Center)

ListView1.Columns.Add(“AUTHOR”, 90,
HorizontalAlignment.Center)

ListView1.Columns.Add(“PUBLISHING YEAR”, 130,
HorizontalAlignment.Center)

ListView1.Columns.Add(“EDITION”, 90,
HorizontalAlignment.Center)

ListView1.Columns.Add(“PRICE”, 90,
HorizontalAlignment.Center)

ListView1.Columns.Add(“STATUS”, 90,
HorizontalAlignment.Center)

 ListView1.View = View.Details

 sel = 5

 ‘Call whenclick()

 End Sub

 Sub whenclick()

 Try

 While dr.Read()

Lab: Visual Basic
Programming

NOTES

Self-Instructional
90 Material

 Call adddatatolistview(ListView1, dr(0), dr(1), dr(2),
dr(3), dr(4), dr(5), dr(6), dr(7), dr(8))

 End While

 dr.Close()

 objcon.Close()

 Catch

 ‘MsgBox(“Please Refresh”, MsgBoxStyle.Information, “”)

 End Try

 End Sub

 Public Sub adddatatolistview(ByVal lvw As ListView, ByVal
BookID As String, ByVal GroupID As String, ByVal BookName As
String, ByVal publisher As String, ByVal author As String,
ByVal pubyear As String, ByVal edi As String, ByVal pric As
String, ByVal status As String)

 Dim lv As New ListViewItem

 lvw.Items.Add(lv)

 lv.Text = BookID

 lv.SubItems.Add(GroupID)

 lv.SubItems.Add(BookName)

 lv.SubItems.Add(publisher)

 lv.SubItems.Add(author)

 lv.SubItems.Add(pubyear)

 lv.SubItems.Add(edi)

 lv.SubItems.Add(pric)

 lv.SubItems.Add(status)

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

 If objcon.State = ConnectionState.Closed Then
objcon.Open()

 Select Case (sel)

 Case 1

 com = New OleDb.OleDbCommand(“select * from Books where
BookID=’” & TextBox1.Text & “‘“, objcon)

 dr = com.ExecuteReader

 Case 2

 com = New OleDb.OleDbCommand(“select * from Books where
BookName=’” & TextBox1.Text & “‘“, objcon)

 dr = com.ExecuteReader

NOTES

Self-Instructional
Material 91

Lab: Visual Basic
Programming

 Case 3

 com = New OleDb.OleDbCommand(“select * from Books where
Author=’” & TextBox1.Text & “‘“, objcon)

 dr = com.ExecuteReader

 Case 5

 com = New OleDb.OleDbCommand(“select * from Books”,
objcon)

 dr = com.ExecuteReader

 Case 8

 com = New OleDb.OleDbCommand(“select * from Books where
Status=’” & ComboBox2.Text & “‘“, objcon)

 dr = com.ExecuteReader

 End Select

 Call readData()

 Call whenclick()

 objcon.Close()

 End Sub

 Private Sub ListView1_SelectedIndexChanged(ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
ListView1.SelectedIndexChanged

 End Sub

 Private Sub Button6_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button6.Click

 Try

 Dim i As Integer

 For i = 0 To ListView1.Items.Count - 1

 If ListView1.Items(i).Selected = True Then

 TextBox1.Text = ListView1.Items(i + 1).SubItems(0).Text

 Exit For

 End If

 Next

 ListView1.Focus()

 ListView1.FullRowSelect = True

 Catch ex As Exception

 End Try

 End Sub

 Private Sub Button5_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button5.Click

Lab: Visual Basic
Programming

NOTES

Self-Instructional
92 Material

 Try

 Dim i As Integer

 For i = 0 To ListView1.Items.Count - 1

 If ListView1.Items(i).Selected = True Then

 TextBox1.Text = ListView1.Items(i - 1).SubItems(0).Text

 Exit For

 End If

 Next

 ListView1.Focus()

 ListView1.FullRowSelect = True

 Catch ex As Exception

 End Try

 End Sub

End Class

Issue Book:

Public Class IssueBook

 Private Sub Button9_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button9.Click

 Me.Close()

 End Sub

 Private Sub PictureBox1_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)

 End Sub

NOTES

Self-Instructional
Material 93

Lab: Visual Basic
Programming

 Private Sub IssueBook_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

 Call Retrive_C()

 Call BookID_Combo()

 Call readData()

 End Sub

 Sub Retrive_C()

 Try

 If objcon.State = ConnectionState.Closed Then
objcon.Open()

 com = New OleDb.OleDbCommand(“Select CID from Customer”,
objcon)

 dr = com.ExecuteReader

 While dr.Read

 ComboBox5.Items.Add(dr.Item(0))

 End While

 dr.Close()

 objcon.Close()

 Catch ex As Exception

 End Try

 End Sub

 Sub BookID_Combo()

 Try

 If objcon.State = ConnectionState.Closed Then
objcon.Open()

 com = New OleDb.OleDbCommand(“Select BookID from Books
WHERE status=’Available’”, objcon)

 dr = com.ExecuteReader

 While dr.Read

 ComboBox1.Items.Add(dr.Item(0))

 End While

 dr.Close()

 objcon.Close()

 Catch ex As Exception

 End Try

 End Sub

 Sub readData()

Lab: Visual Basic
Programming

NOTES

Self-Instructional
94 Material

 ListView1.Clear()

 ListView1.Columns.Add(“BOOK ID”, 90,
HorizontalAlignment.Center)

 ListView1.Columns.Add(“GROUP ID”, 90,
HorizontalAlignment.Center)

 ListView1.Columns.Add(“BOOK NAME”, 310,
HorizontalAlignment.Center)

 ListView1.Columns.Add(“PUBLISHER”, 90,
HorizontalAlignment.Center)

 ListView1.Columns.Add(“AUTHOR”, 90,
HorizontalAlignment.Center)

 ListView1.Columns.Add(“PUBLISHING YEAR”, 130,
HorizontalAlignment.Center)

 ListView1.Columns.Add(“EDITION”, 90,
HorizontalAlignment.Center)

 ListView1.Columns.Add(“PRICE”, 90,
HorizontalAlignment.Center)

 ListView1.Columns.Add(“STATUS”, 90,
HorizontalAlignment.Center)

 ListView1.GridLines = True

 ListView1.View = View.Details

 Try

 If (objcon.State = ConnectionState.Closed) Then
objcon.Open()

 com = New OleDb.OleDbCommand(“SELECT * FROM Books WHERE
status=’Available’”, objcon)

 dr = com.ExecuteReader

 While dr.Read()

 Call adddatatolistview(ListView1, dr(0), dr(1), dr(2),
dr(3), dr(4), dr(5), dr(6), dr(7), dr(8))

 End While

 dr.Close()

 objcon.Close()

 Catch

 ‘MsgBox(“Please Refresh”, MsgBoxStyle.Information, “”)

 End Try

 End Sub

 Public Sub adddatatolistview(ByVal lvw As ListView, ByVal
BookID As String, ByVal GroupID As String, ByVal BookName As
String, ByVal Publisher As String, ByVal Author As String,

NOTES

Self-Instructional
Material 95

Lab: Visual Basic
Programming

ByVal PubYear As String, ByVal edi As String, ByVal pric As
String, ByVal st As String)

 Dim lv As New ListViewItem

 lvw.Items.Add(lv)

 lv.Text = BookID

 lv.SubItems.Add(GroupID)

 lv.SubItems.Add(BookName)

 lv.SubItems.Add(Publisher)

 lv.SubItems.Add(Author)

 lv.SubItems.Add(PubYear)

 lv.SubItems.Add(edi)

 lv.SubItems.Add(pric)

 lv.SubItems.Add(st)

 End Sub

 Sub Retrive()

 objcon.Open()

 com = New OleDb.OleDbCommand(“SELECT * FROM Books”,
objcon)

 com.ExecuteNonQuery()

 dr = com.ExecuteReader

 dr.Read()

 While (dr.NextResult)

 ComboBox1.Items.Add(dr(1))

 End While

 objcon.Close()

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

 Try

 If objcon.State = ConnectionState.Closed Then
objcon.Open()

 com = New OleDb.OleDbCommand(“UPDATE Books SET
status=’Rented’ WHERE BookID=’” & ComboBox1.Text & “‘“, objcon)

 com.ExecuteNonQuery()

 objcon.Close()

 Call readData()

 If objcon.State = ConnectionState.Closed Then
objcon.Open()

Lab: Visual Basic
Programming

NOTES

Self-Instructional
96 Material

 com = New OleDb.OleDbCommand(“INSERT INTO Issue VALUES(‘“
& ComboBox1.Text & “‘,’” & ComboBox2.Text & “‘,’” &
TextBox2.Text & “‘,’” & ComboBox5.Text & “‘,’” & TextBox1.Text
& “‘,’” & DateTimePicker1.Text & “‘,’” & DateTimePicker2.Text
& “‘)”, objcon)

 com.ExecuteNonQuery()

 MsgBox(“Book has been Issued!”, 0, “”)

 Call readData()

 objcon.Close()

 Catch ex As Exception

 MsgBox(ex.Message, 0, “”)

 End Try

 End Sub

 Private Sub ComboBox1_SelectedIndexChanged(ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
ComboBox1.SelectedIndexChanged

 Dim i As Integer

 ListView1.SelectedItems.Clear()

 TextBox1.Focus()

 Try

 If Me.ComboBox1.Text = “” Then

 TextBox2.Text = “”

 Else

 For i = 0 To ListView1.Items.Count - 1

 If ComboBox1.Text = ListView1.Items(i).SubItems(0).Text
Then

 ComboBox2.Text = ListView1.Items(i).SubItems(1).Text

 TextBox2.Text = ListView1.Items(i).SubItems(2).Text

 TextBox3.Text = ListView1.Items(i).SubItems(3).Text

 TextBox4.Text = ListView1.Items(i).SubItems(4).Text

 ComboBox3.Text = ListView1.Items(i).SubItems(5).Text

 TextBox5.Text = ListView1.Items(i).SubItems(6).Text

 TextBox6.Text = ListView1.Items(i).SubItems(7).Text

 ComboBox4.Text = ListView1.Items(i).SubItems(8).Text

 ListView1.Items(i).Selected = True

 Exit For

 End If

NOTES

Self-Instructional
Material 97

Lab: Visual Basic
Programming

 Next

 End If

 Catch

 End Try

 End Sub

 Private Sub Button8_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button8.Click

 Try

 If ComboBox1.Text = “” Then

 MsgBox(“Please mention the BookID”, 0, “”)

 Else

 If objcon.State = ConnectionState.Closed Then

 com = New OleDb.OleDbCommand(“delete from Issue where
BookID=’” & ComboBox1.Text & “‘“, objcon)

 If MsgBox(“Do you really want to delete?”,
MsgBoxStyle.YesNo, “Are you sure?”) =
Windows.Forms.DialogResult.Yes Then

 com.ExecuteNonQuery()

 End If

 objcon.Close()

 End If

 End If

 Catch ex As Exception

 End Try

 End Sub

 Private Sub ListView1_SelectedIndexChanged(ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
ListView1.SelectedIndexChanged

 Dim i As Integer

 For i = 0 To ListView1.Items.Count - 1

 If ListView1.Items(i).Selected = True Then

 ComboBox1.Text = ListView1.Items(i).SubItems(0).Text

 Exit For

 End If

 Next

Lab: Visual Basic
Programming

NOTES

Self-Instructional
98 Material

 ListView1.Focus()

 ListView1.FullRowSelect = True

 End Sub

 Private Sub ComboBox5_SelectedIndexChanged(ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
ComboBox5.SelectedIndexChanged

 Try

 If objcon.State = ConnectionState.Closed Then
objcon.Open()

 com = New OleDb.OleDbCommand(“Select CID,CName from
Customer”, objcon)

 dr = com.ExecuteReader

 While dr.Read

 If dr.Item(0) = ComboBox5.Text Then

 TextBox1.Text = dr.Item(1)

 End If

 End While

 dr.Close()

 objcon.Close()

 Catch ex As Exception

 End Try

 End Sub

 Private Sub Button6_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button6.Click

 Try

 Dim i As Integer

 For i = 0 To ListView1.Items.Count - 1

 If ListView1.Items(i).Selected = True Then

 TextBox1.Text = ListView1.Items(i + 1).SubItems(0).Text

 Exit For

 End If

 Next

 ListView1.Focus()

 ListView1.FullRowSelect = True

 Catch ex As Exception

NOTES

Self-Instructional
Material 99

Lab: Visual Basic
Programming

 End Try

 End Sub

 Private Sub Button5_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button5.Click

 Try

 Dim i As Integer

 For i = 0 To ListView1.Items.Count - 1

 If ListView1.Items(i).Selected = True Then

 TextBox1.Text = ListView1.Items(i - 1).SubItems(0).Text

 Exit For

 End If

 Next

 ListView1.Focus()

 ListView1.FullRowSelect = True

 Catch ex As Exception

 End Try

 End Sub

End Class

Return Book:

Public Class ReturnBook

 Private Sub Button9_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button9.Click

 Me.Close()

 End Sub

Lab: Visual Basic
Programming

NOTES

Self-Instructional
100 Material

 Private Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

 If ComboBox1.Text = “” Then

 MsgBox(“Please mention the Book ID”, 0, “”)

 Else

 Try

 If objcon.State = ConnectionState.Closed Then
objcon.Open()

 com = New OleDb.OleDbCommand(“UPDATE Books SET
status=’Available’ WHERE BookID=’” & ComboBox1.Text & “‘“,
objcon)

 com.ExecuteNonQuery()

 objcon.Close()

 Call readData()

 If objcon.State = ConnectionState.Closed Then
objcon.Open()

 com = New OleDb.OleDbCommand(“INSERT INTO Returns
VALUES(‘“ & ComboBox1.Text & “‘,’” & ComboBox2.Text & “‘,’” &
TextBox2.Text & “‘,’” & ComboBox5.Text & “‘,’” & TextBox1.Text
& “‘,’” & TextBox3.Text & “‘,’” & TextBox7.Text & “‘,’” &
DateTimePicker2.Text & “‘,’” & TextBox6.Text & “‘)”, objcon)

 com.ExecuteNonQuery()

 MsgBox(“Book has been returned!”, 0, “”)

 objcon.Close()

 Catch ex As Exception

 MsgBox(ex.Message, 0, “”)

 End Try

 End If

 End Sub

 Private Sub Button8_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button8.Click

 If ComboBox1.Text = “” Then

 MsgBox(“Please mention a Book ID”, 0, “”)

 Else

 Try

 If objcon.State = ConnectionState.Closed Then
objcon.Open()

 com = New OleDb.OleDbCommand(“DELETE FROM Returns WHERE
BookID=’” & ComboBox1.Text & “‘“, objcon)

NOTES

Self-Instructional
Material 101

Lab: Visual Basic
Programming

 com.ExecuteNonQuery()

 MsgBox(“Deleted Success!”, 0, “”)

 Call ClearThem()

 objcon.Close()

 Catch ex As Exception

 End Try

 End If

 End Sub

 Sub ClearThem()

 ComboBox1.TabIndex = “”

 ComboBox2.Text = “”

 TextBox2.Text = “”

 TextBox3.Text = “”

 TextBox6.Text = “”

 ComboBox5.Text = “”

 TextBox1.Text = “”

 TextBox7.Text = “”

 DateTimePicker2.Refresh()

 End Sub

 Private Sub ReturnBook_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

 Call BookID_Combo()

 Call readData()

 End Sub

 Sub BookID_Combo()

 Try

 If objcon.State = ConnectionState.Closed Then
objcon.Open()

 com = New OleDb.OleDbCommand(“Select BookID from Books
WHERE status=’Rented’”, objcon)

 dr = com.ExecuteReader

 While dr.Read

 ComboBox1.Items.Add(dr.Item(0))

 End While

 dr.Close()

Lab: Visual Basic
Programming

NOTES

Self-Instructional
102 Material

 objcon.Close()

 Catch ex As Exception

 End Try

 End Sub

 Sub readData()

 ListView1.Clear()

 ListView1.Columns.Add(“BOOK ID”, 90,
HorizontalAlignment.Center)

 ListView1.Columns.Add(“GROUP ID”, 90,
HorizontalAlignment.Center)

 ListView1.Columns.Add(“BOOK NAME”, 310,
HorizontalAlignment.Center)

 ListView1.Columns.Add(“PUBLISHER”, 90,
HorizontalAlignment.Center)

 ListView1.Columns.Add(“AUTHOR”, 90,
HorizontalAlignment.Center)

 ListView1.Columns.Add(“PUBLISHING YEAR”, 130,
HorizontalAlignment.Center)

 ListView1.Columns.Add(“EDITION”, 90,
HorizontalAlignment.Center)

 ListView1.Columns.Add(“PRICE”, 90,
HorizontalAlignment.Center)

 ListView1.Columns.Add(“STATUS”, 90,
HorizontalAlignment.Center)

 ListView1.View = View.Details

 Try

 If (objcon.State = ConnectionState.Closed) Then
objcon.Open()

 com = New OleDb.OleDbCommand(“SELECT * FROM Books WHERE
status=’Rented’”, objcon)

 dr = com.ExecuteReader

 While dr.Read()

 Call adddatatolistview(ListView1, dr(0), dr(1), dr(2),
dr(3), dr(4), dr(5), dr(6), dr(7), dr(8))

 End While

 dr.Close()

 objcon.Close()

 Catch

NOTES

Self-Instructional
Material 103

Lab: Visual Basic
Programming

 ‘MsgBox(“Please Refresh”, MsgBoxStyle.Information, “”)

 End Try

 End Sub

 Public Sub adddatatolistview(ByVal lvw As ListView, ByVal
BookID As String, ByVal GroupID As String, ByVal BookName As
String, ByVal Publisher As String, ByVal Author As String,
ByVal PubYear As String, ByVal edi As String, ByVal pric As
String, ByVal st As String)

 Dim lv As New ListViewItem

 lvw.Items.Add(lv)

 lv.Text = BookID

 lv.SubItems.Add(GroupID)

 lv.SubItems.Add(BookName)

 lv.SubItems.Add(Publisher)

 lv.SubItems.Add(Author)

 lv.SubItems.Add(PubYear)

 lv.SubItems.Add(edi)

 lv.SubItems.Add(pric)

 lv.SubItems.Add(st)

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

 Me.Refresh()

 End Sub

 Private Sub ListView1_SelectedIndexChanged(ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
ListView1.SelectedIndexChanged

 Dim i As Integer

 For i = 0 To ListView1.Items.Count - 1

 If ListView1.Items(i).Selected = True Then

 ComboBox1.Text = ListView1.Items(i).SubItems(0).Text

 Exit For

 End If

 Next

 ListView1.Focus()

 ListView1.FullRowSelect = True

 End Sub

Lab: Visual Basic
Programming

NOTES

Self-Instructional
104 Material

 Private Sub ComboBox1_SelectedIndexChanged(ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
ComboBox1.SelectedIndexChanged

 Dim i As Integer

 ListView1.SelectedItems.Clear()

 TextBox1.Focus()

 Try

 If Me.ComboBox1.Text = “” Then

 TextBox2.Text = “”

 Else

 For i = 0 To ListView1.Items.Count - 1

 If ComboBox1.Text = ListView1.Items(i).SubItems(0).Text
Then

 ComboBox2.Text = ListView1.Items(i).SubItems(1).Text

 TextBox2.Text = ListView1.Items(i).SubItems(2).Text

 ListView1.Items(i).Selected = True

 Exit For

 End If

 Next

 End If

 Catch

 End Try

 Call IssueDetail()

 End Sub

 Sub IssueDetail() ‘

 Try

 If objcon.State = ConnectionState.Closed Then
objcon.Open()

 com = New OleDb.OleDbCommand(“Select IssueDate, IssueName,
IssueTo, DueDate from Issue WHERE BookID=’” & ComboBox1.Text
& “‘“, objcon)

 dr = com.ExecuteReader

 While dr.Read

 ComboBox5.Text = dr.Item(2)

 TextBox1.Text = dr.Item(1)

 TextBox3.Text = dr.Item(0)

 TextBox7.Text = dr.Item(3)

 End While

NOTES

Self-Instructional
Material 105

Lab: Visual Basic
Programming

 dr.Close()

 objcon.Close()

 Catch ex As Exception

 End Try

 End Sub

 Private Sub Button6_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button6.Click

 Try

 Dim i As Integer

 For i = 0 To ListView1.Items.Count - 1

 If ListView1.Items(i).Selected = True Then

 TextBox1.Text = ListView1.Items(i + 1).SubItems(0).Text

 Exit For

 End If

 Next

 ListView1.Focus()

 ListView1.FullRowSelect = True

 Catch ex As Exception

 End Try

 End Sub

 Private Sub Button5_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button5.Click

 Try

 Dim i As Integer

 For i = 0 To ListView1.Items.Count - 1

 If ListView1.Items(i).Selected = True Then

 TextBox1.Text = ListView1.Items(i + 1).SubItems(0).Text

 Exit For

 End If

 Next

 ListView1.Focus()

 ListView1.FullRowSelect = True

 Catch ex As Exception

Lab: Visual Basic
Programming

NOTES

Self-Instructional
106 Material

 End Try

 End Sub

End Class

2. Student Marksheet Processing

Public conDB As New OleDb.OleDbConnection

 Public Sub connectDB()

 If conDB.State = ConnectionState.Closed Then

 conDB.ConnectionString =
“Provider=Microsoft.ACE.OLEDB.12.0; Data Source=” &
Application.StartupPath & “\stuDB.accdb”

 conDB.Open()

 End If

 End Sub

 Function getNewID(tblName As String, fldName As String)
As String

 Dim strVal, sql As String

 Dim cmd As OleDb.OleDbCommand

 connectDB()

 sql = “select max(“ & fldName & “) from “ & tblName

 cmd = New OleDb.OleDbCommand(sql, conDB)

 strVal = Convert.ToString(cmd.ExecuteScalar())

 If strVal = “” Then

 strVal = “1”

 Else

 strVal = Convert.ToString(CInt(strVal) + 1)

 End If

 Return strVal

 End Function

NOTES

Self-Instructional
Material 107

Lab: Visual Basic
Programming

Button Click:

Dim strSQL As String

 Dim gndr As String

 Dim i As Integer

 If rdbFemale.Checked = True Then

 gndr = “Female”

 Else

 gndr = “Male”

 End If

 strSQL = “insert into studentmaster values(“ &
txtStuID.Text & “,’” & cboClass.Text & “‘,’” & txtStuName.Text
& “‘,’” & txtFName.Text & “‘,’” & txtMName.Text & “‘,’” & gndr
& “‘,’” & txtPhone.Text & “‘,’” & txtEmail.Text & “‘)”

 cmd = New OleDb.OleDbCommand(strSQL, conDB)

 cmd.ExecuteNonQuery()

 For i = 0 To dgvMarks.RowCount - 2

 strSQL = “insert into studentmarks values(“ & txtStuID.Text
& “,’” & dgvMarks.Item(0, i).Value & “‘,” & dgvMarks.Item(1,
i).Value & “)”

 cmd = New OleDb.OleDbCommand(strSQL, conDB)

 cmd.ExecuteNonQuery()

 Next

Search Button:

Dim sid, cnt As Integer

 Dim drl As OleDb.OleDbDataReader

 Dim cmdl As New OleDb.OleDbCommand

 sid = CInt(InputBox(“Enter the StudentID to search”))

 cmdl = New OleDbPress Ctrl+V to copy the following code

Lab: Visual Basic
Programming

NOTES

Self-Instructional
108 Material

Dim sid, cnt As Integer

 Dim drl As OleDb.OleDbDataReader

 Dim cmdl As New OleDb.OleDbCommand

 sid = CInt(InputBox(“Enter the StudentID to search”))

 cmdl = New OleDb.OleDbCommand(“select * from studentmaster
where stuid=” & sid, conDB)

 drl = cmdl.ExecuteReader()

 If drl.Read() Then

 txtStuID.Text = drl.Item(0)

 cboClass.Text = drl.Item(1)

 txtStuName.Text = drl.Item(2)

 txtFName.Text = drl.Item(3)

 txtMName.Text = drl.Item(4)

 If drl.Item(5) = “Female” Then

 rdbFemale.Checked = True

 Else

 rdbMale.Checked = True

 End If

 txtPhone.Text = drl.Item(6)

 txtEmail.Text = drl.Item(7)

 drl.Close()

 cmdl = New OleDb.OleDbCommand(“select subject, marks
from studentmarks where stuid=” & sid, conDB)

 drl = cmdl.ExecuteReader()

 dgvMarks.Rows.Clear()

 cnt = 0

 While drl.Read()

 dgvMarks.Rows.Add()

 dgvMarks.Item(0, cnt).Value = Convert.ToString
(drl.Item(0))

 dgvMarks.Item(1, cnt).Value = Convert.ToString
(drl.Item(1))

 cnt = cnt + 1

 End While

 Else

 MsgBox(“No student with this ID”)

 End If

NOTES

Self-Instructional
Material 109

Lab: Visual Basic
Programming

.OleDbCommand(“select * from studentmaster where stuid=”
& sid, conDB)

 drl = cmdl.ExecuteReader()

 If drl.Read() Then

 txtStuID.Text = drl.Item(0)

 cboClass.Text = drl.Item(1)

 txtStuName.Text = drl.Item(2)

 txtFName.Text = drl.Item(3)

 txtMName.Text = drl.Item(4)

 If drl.Item(5) = “Female” Then

 rdbFemale.Checked = True

 Else

 rdbMale.Checked = True

 End If

 txtPhone.Text = drl.Item(6)

 txtEmail.Text = drl.Item(7)

 drl.Close()

 cmdl = New OleDb.OleDbCommand(“select subject, marks
from studentmarks where stuid=” & sid, conDB)

 drl = cmdl.ExecuteReader()

 dgvMarks.Rows.Clear()

 cnt = 0

 While drl.Read()

 dgvMarks.Rows.Add()

 dgvMarks.Item(0, cnt).Value = Convert.ToString
(drl.Item(0))

 dgvMarks.Item(1, cnt).Value = Convert.ToString
(drl.Item(1))

 cnt = cnt + 1

 End While

 Else

 MsgBox(“No student with this ID”)

 End If

Lab: Visual Basic
Programming

NOTES

Self-Instructional
110 Material

Button Update:

Dim strSQL As String

 Dim gndr As String

 Dim i As Integer

 If rdbFemale.Checked = True Then

 gndr = “Female”

 Else

 gndr = “Male”

 End If

 strSQL = “update studentmaster set stuClass=’” &
cboClass.Text & “‘, StuName=’” & txtStuName.Text & “‘,
StuFname=’” _

& txtFName.Text & “‘,StuMName=’” & txtMName.Text &
“‘,StuGender=’” & gndr & “‘,StuPhone=’” & txtPhone.Text _

& “‘,StuEmail=’” & txtEmail.Text & “‘ where StuID=” &
CInt(txtStuID.Text)

 cmd = New OleDb.OleDbCommand(strSQL, conDB)

 cmd.ExecuteNonQuery()

 ‘ delete all records from marks table to add the new
marks and subjects

 strSQL = “delete * from studentmarks where StuID=” &
CInt(txtStuID.Text)

 cmd = New OleDb.OleDbCommand(strSQL, conDB)

 cmd.ExecuteNonQuery()

 ‘ Insert the new subjects and marks for the student

 For i = 0 To dgvMarks.RowCount - 2

 strSQL = “insert into studentmarks values(“ & txtStuID.Text
& “,’” & dgvMarks.Item(0, i).Value & “‘,” & dgvMarks.Item(1,
i).Value & “)”

 cmd = New OleDb.OleDbCommand(strSQL, conDB)

 cmd.ExecuteNonQuery()

 Next

Button Delete:

Dim strSQL As String

 ‘ delete the record of student from master table

 strSQL = “delete * from studentmaster where StuID=” &
CInt(txtStuID.Text)

 cmd = New OleDb.OleDbCommand(strSQL, conDB)

 cmd.ExecuteNonQuery()

 ‘ delete all records from marks table

NOTES

Self-Instructional
Material 111

Lab: Visual Basic
Programming

 strSQL = “delete * from studentmarks where StuID=” &
CInt(txtStuID.Text)

 cmd = New OleDb.OleDbCommand(strSQL, conDB)

 cmd.ExecuteNonQuery()

Print Button:

Dim frm As New Form2 ‘ creates an object of form containing
the reportviewer

 frm.Show()’ displays the report

Report Viewer:

Private Sub Form2_Load(sender As Object, e As EventArgs)
Handles MyBase.Load

 Dim dt1, dt2 As New DataTable

 Dim sid As Integer

 connectDB()

 sid = CInt(frmStuDetails.Controls(“txtStuID”).Text)

 Dim cmd1 As New OleDb.OleDbCommand(“SELECT * from
StudentMarks where stuid=” & sid, conDB)

 cmd1.CommandTimeout = 4096

 Dim ta1 As New OleDb.OleDbDataAdapter(cmd1)

 ta1.Fill(dt1)

 Dim cmd2 As New OleDb.OleDbCommand(“SELECT * from
StudentMaster where stuid=” & sid, conDB)

 cmd2.CommandTimeout = 4096

 Dim ta2 As New OleDb.OleDbDataAdapter(cmd2)

 ta2.Fill(dt2)

 With Me.ReportViewer1.LocalReport

 .DataSources.Clear()

.DataSources.Add(New Microsoft.Reporting.WinForms.
ReportDataSource(“DataSet1”, dt1))

.DataSources.Add(New Microsoft.Reporting.WinForms.
ReportDataSource(“DataSet2”, dt2))

 End With

 Me.ReportViewer1.RefreshReport()

 End Sub

Lab: Visual Basic
Programming

NOTES

Self-Instructional
112 Material

3. Telephone Directory Maintenance

Imports System.IO

Imports System.IO.Directory

Imports System.IO.DirectoryInfo

Imports System.IO.Path

Imports System.Environment

Imports System.IO.FileStream

Imports System.IO.File

Imports System.IO.FileInfo

Imports System.Data.SqlClient

Imports System.Data

Imports System.Data.OleDb

Public Class frmPonBuk

 Dim strPath As String

 Dim dsContact As New DataSet

 Dim dsContactNam As New DataSet

 Dim daContact As New OleDbDataAdapter

 Dim daContactNam As New OleDbDataAdapter

 Dim sqlCommand As New OleDbCommand

 Dim strAction As String

 Dim strSQL As String

 Dim dt As New DataTable

 Dim dtContact As New DataTable

 Dim dtSearch As New DataTable

 Dim daSearch As New OleDbDataAdapter

 Dim dsSearch As New DataSet

 Dim drDSRow As DataRow

 Dim drNewRow As DataRow

 Dim cnPhoneBook As New OleDbConnection

 Private Sub frmPonBuk_KeyDown(ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyEventArgs) Handles
Me.KeyDown

 ‘code for short cut key, note this will work if you

 ‘set the form’s keypreview property to true

NOTES

Self-Instructional
Material 113

Lab: Visual Basic
Programming

 Select Case e.KeyCode

 Case Keys.F8

 If Me.cmdAdd.Enabled = True Then

 Me.cmdAdd_Click(sender, e)

 End If

 Case Keys.F9

 If Me.cmdEdit.Enabled = True Then

 Me.cmdEdit_Click(sender, e)

 End If

 Case Keys.F10

 If Me.cmdDelete.Enabled = True Then

 Me.cmdDelete_Click(sender, e)

 End If

 Case Keys.F11

 If Me.cmdUpdate.Enabled = True Then

 Me.cmdUpdate_Click(sender, e)

 End If

 Case Keys.F12

 If Me.cmdCancel.Enabled = True Then

 Me.cmdCancel_Click(sender, e)

 End If

 Case Keys.Enter

 SendKeys.Send(“{TAB}”)

 End Select

 End Sub

 Private Sub frmPonBuk_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

 ‘Dim strPath As String

 ‘you can use this method in order to get your
database(Access) path

 ‘strPath = System.Environment.CurrentDirectory &
“\Data\PhoneBook.accdb”

 ‘cnPhoneBook.ConnectionString = “ Provider=Microsoft.
ACE.OLEDB.12.0;Data Source=” & specialName & “;Persist Security
Info=False;”

cnPhoneBook.ConnectionString = “ Provider=Microsoft.ACE.
OLEDB.12.0;Data Source=../Data/PhoneBook.accdb;Persist Security
Info=False;”

Lab: Visual Basic
Programming

NOTES

Self-Instructional
114 Material

 strSQL = “ SELECT [LastName]+’, ‘+[FirstName]+’
‘+[MiddleName] AS Name, TblContact.* FROM TblContact ORDER BY
[LastName]+’, ‘+[FirstName]+’ ‘+[MiddleName];”

 daContact.SelectCommand = New OleDbCommand(strSQL,
cnPhoneBook)

 daContact.Fill(dsContact, “TblContact”)

 Me.dtContact = dsContact.Tables(“TblContact”)

 ‘binding controls to dataset

 Me.txtLstNam.DataBindings.Add(“Text”, dsContact,
“TblContact.LastName”)

 Me.txtFstNam.DataBindings.Add(“Text”, dsContact,
“TblContact.FirstName”)

 Me.txtMidNam.DataBindings.Add(“Text”, dsContact,
“TblContact.MiddleName”)

 Me.txtHomAdr.DataBindings.Add(“Text”, dsContact,
“TblContact.HomeAdr”)

 Me.txtBusAdr.DataBindings.Add(“Text”, dsContact,
“TblContact.BusAdr”)

 Me.txtTelNo.DataBindings.Add(“Text”, dsContact,
“TblContact.TelNo”)

 Me.txtMobNo.DataBindings.Add(“Text”, dsContact,
“TblContact.MobNo”)

 Me.txtEml.DataBindings.Add(“Text”, dsContact,
“TblContact.EMail”)

 ‘setting datagrid properties

 Me.dtgContact.DataSource = dsContact

 Me.dtgContact.DataMember = “TblContact”

 Me.dtgContact.Columns(0).HeaderText = “Name”

 Me.dtgContact.Columns(1).Visible = False

 Me.dtgContact.Columns(2).Visible = False

 Me.dtgContact.Columns(3).Visible = False

 Me.dtgContact.Columns(4).Visible = False

 Me.dtgContact.Columns(5).HeaderText = “Home Address”

 Me.dtgContact.Columns(6).HeaderText = “Bus. Address”

 Me.dtgContact.Columns(7).HeaderText = “Telephone”

 Me.dtgContact.Columns(8).HeaderText = “Mobile”

 Me.dtgContact.Columns(9).HeaderText = “E-Mail”

 ‘Used SQL statement for Combo box to display the name of
contact person

NOTES

Self-Instructional
Material 115

Lab: Visual Basic
Programming

 strSQL = “ SELECT TblContact.ContactID, [LastName]+’,
‘+[FirstName]+’ ‘+[MiddleName] AS Name FROM TblContact ORDER
BY [LastName]+’, ‘+[FirstName]+’ ‘+[MiddleName];”

 daContactNam.SelectCommand = New OleDbCommand(strSQL,
cnPhoneBook)

 daContactNam.Fill(dsContactNam, “TblContact”)

 ‘datatable for combo box

 Me.dt = dsContactNam.Tables(“TblContact”)

 Me.cmbSearch.DataSource = dt

 Me.cmbSearch.DisplayMember = “Name”

 Me.cmbSearch.ValueMember = “ContactID”

 Me.cmbSearch.SelectedIndex = -1

 Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext(dsContact, “TblContact”).Position + 1 & “
of : “ & dsContact.Tables(“TblContact”).Rows.Count

 ‘ call procedure to lock the text field

 lockField()

 ‘ call procedure to disabled update

 UpdtOff()

 End Sub

Private Sub cmdFstRec_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdFstRec.Click

Me.BindingContext(dsContact, “TblContact”).Position = 0

Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext(dsContact, “TblContact”).Position + 1 & “
of : “ & dsContact.Tables(“TblContact”).Rows.Count

 End Sub

 Private Sub cmdPrv_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdPrv.Click

 Me.BindingContext(dsContact, “TblContact”).Position =
Me.BindingContext(dsContact, “TblContact”).Position - 1

 Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext(dsContact, “TblContact”).Position + 1 & “
of : “ & dsContact.Tables(“TblContact”).Rows.Count

 End Sub

 Private Sub cmdNext_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdNext.Click

 Me.BindingContext(dsContact, “TblContact”).Position =
Me.BindingContext(dsContact, “TblContact”).Position + 1

Lab: Visual Basic
Programming

NOTES

Self-Instructional
116 Material

 Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext(dsContact, “TblContact”).Position + 1 & “
of : “ & dsContact.Tables(“TblContact”).Rows.Count

 End Sub

 Private Sub cmdLst_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdLst.Click

 Me.BindingContext(dsContact, “TblContact”).Position =
Me.BindingContext(dsContact, “TblContact”).Count - 1

 Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext(dsContact, “TblContact”).Position + 1 & “
of : “ & dsContact.Tables(“TblContact”).Rows.Count

 End Sub

 Private Sub UnlockField()

 Me.txtFstNam.ReadOnly = False

 Me.txtLstNam.ReadOnly = False

 Me.txtMidNam.ReadOnly = False

 Me.txtHomAdr.ReadOnly = False

 Me.txtBusAdr.ReadOnly = False

 Me.txtTelNo.ReadOnly = False

 Me.txtMobNo.ReadOnly = False

 Me.txtEml.ReadOnly = False

 End Sub

 Private Sub lockField()

 Me.txtFstNam.ReadOnly = True

 Me.txtLstNam.ReadOnly = True

 Me.txtMidNam.ReadOnly = True

 Me.txtHomAdr.ReadOnly = True

 Me.txtBusAdr.ReadOnly = True

 Me.txtTelNo.ReadOnly = True

 Me.txtMobNo.ReadOnly = True

 Me.txtEml.ReadOnly = True

 End Sub

 Private Sub UpdtOff()

NOTES

Self-Instructional
Material 117

Lab: Visual Basic
Programming

 Me.cmdAdd.Enabled = True

 Me.cmdEdit.Enabled = True

 Me.cmdDelete.Enabled = True

 Me.cmdUpdate.Enabled = False

 Me.cmdCancel.Enabled = False

 Me.cmdAdd.BackColor = Color.Tan

 Me.cmdEdit.BackColor = Color.Tan

 Me.cmdDelete.BackColor = Color.Tan

 Me.cmdUpdate.BackColor = Color.Black

 Me.cmdCancel.BackColor = Color.Black

 End Sub

 Private Sub UpdtOn()

 Me.cmdAdd.Enabled = False

 Me.cmdEdit.Enabled = False

 Me.cmdDelete.Enabled = False

 Me.cmdUpdate.Enabled = True

 Me.cmdCancel.Enabled = True

 Me.cmdAdd.BackColor = Color.Black

 Me.cmdEdit.BackColor = Color.Black

 Me.cmdDelete.BackColor = Color.Black

 Me.cmdUpdate.BackColor = Color.Tan

 Me.cmdCancel.BackColor = Color.Tan

 End Sub

 Private Sub cmdAdd_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdAdd.Click

 strAction = “ADD”

 UpdtOn()

 UnlockField()

 Me.BindingContext(dsContact, “TblContact”).AddNew()

 Me.txtLstNam.Focus()

 End Sub

Lab: Visual Basic
Programming

NOTES

Self-Instructional
118 Material

 Private Sub cmdEdit_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdEdit.Click

 strAction = “EDIT”

 UpdtOn()

 UnlockField()

 End Sub

 Private Sub cmdDelete_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdDelete.Click

 Dim delCommand As New OleDbCommand

 Dim intPos As Integer

 Dim intContactID As Integer

 Dim strUsrRsp As String

 intPos = Me.BindingContext(dsContact,
“TblContact”).Position

 intContactID = dtContact.Rows(intPos).Item(1)

 strUsrRsp = MsgBox(“Do you want to delete this record”,
MsgBoxStyle.YesNo + MsgBoxStyle.Question +
MsgBoxStyle.ApplicationModal, “Phone Book”)

 If strUsrRsp = MsgBoxResult.Yes Then

 Try

 cnPhoneBook.Open()

 strSQL = “Delete from TblContact where (ContactID = “ &
intContactID & “)”

 sqlCommand = New OleDbCommand(strSQL, cnPhoneBook)

 sqlCommand.ExecuteNonQuery()

 cnPhoneBook.Close()

 dsContact.Clear()

 daContact.Fill(dsContact, “TblContact”)

 MsgBox(“Record has been deleted”, MsgBoxStyle.OkOnly +
MsgBoxStyle.Information + MsgBoxStyle.ApplicationModal, “Phone
Book”)

 Catch ex As Exception

 MsgBox(Err.Description)

 End Try

 Else

NOTES

Self-Instructional
Material 119

Lab: Visual Basic
Programming

 End If

 dsContactNam.Clear()

 daContactNam.Fill(dsContactNam, “TblContact”)

 cmbSearch.SelectedIndex = -1

 End Sub

 Private Sub cmdUpdate_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdUpdate.Click

 Dim SubPos As Integer

 Dim intPos As Integer

 Dim intContactID As Integer

 Try

 Select Case strAction

 Case “ADD”

Me.BindingContext(dsContact, “TblContact”).
EndCurrentEdit()

 cnPhoneBook.Open()

 strSQL = “INSERT INTO TblContact (LastName, FirstName,
MiddleName, HomeAdr, BusAdr, TelNo, MobNo, EMail) “

 strSQL = strSQL & “ VALUES (‘“ & Me.txtLstNam.Text &
“‘,’” & Me.txtFstNam.Text & “‘,’” & Me.txtMidNam.Text & “‘,’”
& Me.txtHomAdr.Text & “‘,’” & Me.txtBusAdr.Text & “‘,’” &
Me.txtTelNo.Text & “‘,’” & Me.txtMobNo.Text & “‘,’” &
Me.txtEml.Text & “‘);”

 sqlCommand = New OleDbCommand(strSQL, cnPhoneBook)

 sqlCommand.ExecuteNonQuery()

 cnPhoneBook.Close()

 dsContact.Clear()

 daContact.Fill(dsContact, “TblContact”)

 Case “EDIT”

intPos = Me.BindingContext(dsContact, “TblContact”).
Position

 intContactID = dtContact.Rows(intPos).Item(1)

Me.BindingContext(dsContact, “TblContact”).
EndCurrentEdit()

 cnPhoneBook.Open()

Lab: Visual Basic
Programming

NOTES

Self-Instructional
120 Material

strSQL = “UPDATE TblContact SET LastName = ‘“ &
Me.txtLstNam.Text & “‘, FirstName = ‘“ & Me.txtFstNam.Text &
“‘, MiddleName = ‘“ & Me.txtMidNam.Text & “‘, HomeAdr = ‘“ &
Me.txtHomAdr.Text & “‘, “

strSQL = strSQL & “ BusAdr = ‘“ & Me.txtBusAdr.Text & “‘,
TelNo = ‘“ & Me.txtTelNo.Text & “‘, MobNo = ‘“ & Me.txtMobNo.Text
& “‘, EMail = ‘“ & Me.txtEml.Text & “‘ WHERE
(((TblContact.ContactID)=” & intContactID & “));”

 sqlCommand = New OleDbCommand(strSQL, cnPhoneBook)

 sqlCommand.ExecuteNonQuery()

 cnPhoneBook.Close()

 SubPos = Me.BindingContext(dsContact,
“TblContact”).Position

 dsContact.Clear()

 daContact.Fill(dsContact, “TblContact”)

 Me.BindingContext(dsContact, “TblContact”).Position =
SubPos

 End Select

 UpdtOff()

 lockField()

 Catch ex As Exception

 MsgBox(strSQL)

 End Try

 dsContactNam.Clear()

 daContactNam.Fill(dsContactNam, “TblContact”)

Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext(dsContact, “TblContact”).Position + 1 & “
of : “ & dsContact.Tables(“TblContact”).Rows.Count

 End Sub

 Private Sub cmdCancel_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdCancel.Click

Me.BindingContext(dsContact, “TblContact”).
CancelCurrentEdit()

 UpdtOff()

 lockField()

 Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext(dsContact, “TblContact”).Position + 1 & “
of : “ & dsContact.Tables(“TblContact”).Rows.Count

 End Sub

NOTES

Self-Instructional
Material 121

Lab: Visual Basic
Programming

 Private Sub cmdSearch_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdSearch.Click

 Dim ContactIDSrh As Integer

 Dim ColNum As Integer

 Dim RowNum As Integer

 Dim RecCount As Integer

 ColNum = 0

 RowNum = 0

 ‘Check Combo box if it has a value

 If Me.cmbSearch.SelectedValue <> 0 Then

 RecCount = Me.BindingContext(dsContact,
“TblContact”).Count

 ContactIDSrh = Me.cmbSearch.SelectedValue

 ‘move at first record

 Me.BindingContext(dsContact, “TblContact”).Position =
0

 ‘loop until we find the desired Contact Person

 Do While ContactIDSrh <> dtContact.Rows(RowNum).Item(1)

 If RowNum <> RecCount Then

 ‘move record position

 Me.BindingContext(dsContact, “TblContact”).Position =
RowNum + 1

 RowNum = RowNum + 1

 Else

 ‘exit loop if record found

 Exit Do

 End If

 Loop

 Else

 MsgBox(“Please Select the Student name to be searched”)

 End If

 End Sub

 Private Sub txtLstNam_LostFocus(ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtLstNam.LostFocus

 ‘this will trigger if the txtLstNam has lost the focus
and during adding new or editting existing record

 If strAction = “ADD” Or strAction = “EDIT” Then

 ‘transform the string into proper case

Lab: Visual Basic
Programming

NOTES

Self-Instructional
122 Material

 Me.txtLstNam.Text = StrConv(Me.txtLstNam.Text,
VbStrConv.ProperCase)

 End If

 End Sub

 Private Sub txtFstNam_LostFocus(ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtFstNam.LostFocus

 If strAction = “ADD” Or strAction = “EDIT” Then

 Me.txtFstNam.Text = StrConv(Me.txtFstNam.Text,
VbStrConv.ProperCase)

 End If

 End Sub

 Private Sub txtMidNam_LostFocus(ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtMidNam.LostFocus

 If strAction = “ADD” Or strAction = “EDIT” Then

 Me.txtMidNam.Text = StrConv(Me.txtMidNam.Text,
VbStrConv.ProperCase)

 End If

 End Sub

 Private Sub txtHomAdr_LostFocus(ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtHomAdr.LostFocus

 If strAction = “ADD” Or strAction = “EDIT” Then

 Me.txtHomAdr.Text = StrConv(Me.txtHomAdr.Text,
VbStrConv.ProperCase)

 End If

 End Sub

 Private Sub txtBusAdr_LostFocus(ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtBusAdr.LostFocus

 If strAction = “ADD” Or strAction = “EDIT” Then

 Me.txtBusAdr.Text = StrConv(Me.txtBusAdr.Text,
VbStrConv.ProperCase)

 End If

 End Sub

 Private Sub txtTelNo_LostFocus(ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtTelNo.LostFocus

 If strAction = “ADD” Or strAction = “EDIT” Then

NOTES

Self-Instructional
Material 123

Lab: Visual Basic
Programming

 If Len(Me.txtTelNo.Text) = 7 Then

 Me.txtTelNo.Text = Mid(Me.txtTelNo.Text, 1, 3) & “-” &
Mid(Me.txtTelNo.Text, 4, 2) & “-” & Mid(Me.txtTelNo.Text, 6,
2)

 End If

 End If

 End Sub

 Private Sub dtgContact_CellClick(ByVal sender As Object,
ByVal e As System.Windows.Forms.DataGridViewCellEventArgs)
Handles dtgContact.CellClick

 Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext(dsContact, “TblContact”).Position + 1 & “
of : “ & dsContact.Tables(“TblContact”).Rows.Count

 End Sub

End Class

4. Gas Booking and Delivering

Main:

Private Sub Command1_Click() Handles Command1.Click

‘#Const Compile_Command1_Click = True

#If Compile_Command1_Click Or CompileAll_Form1 Then

 Form2.Load()

 Form2.Show()

 Close()

#End If‘ Compile_Command1_Click

Lab: Visual Basic
Programming

NOTES

Self-Instructional
124 Material

 End Sub

 Private Sub Command2_Click(ByVal sender As Object, ByVal
e As System.EventArgs) Handles Command2.Click

‘#Const Compile_Command2_Click = True

#If Compile_Command2_Click Or CompileAll_Form1 Then

 Form15.Load()

 Form15.Show()

 Close()

#End If‘ Compile_Command2_Click

 End Sub

 Private Sub Command3_Click(ByVal sender As Object, ByVal
e As System.EventArgs) Handles Command3.Click

‘#Const Compile_Command3_Click = True

#If Compile_Command3_Click Or CompileAll_Form1 Then

 ‘b = InputBox(“Enter Record No”, “Find to Modify”)

 Form6.Load()

 Form6.Show()

 Close()

#End If‘ Compile_Command3_Click

 End Sub

 Private Sub Command4_Click() Handles Command4.Click

‘#Const Compile_Command4_Click = True

#If Compile_Command4_Click Or CompileAll_Form1 Then

 Form16.Load()

 Form16.Show()

 Close()

#End If‘ Compile_Command4_Click

 End Sub

 Private Sub Command5_Click(ByVal sender As Object, ByVal
e As System.EventArgs) Handles Command5.Click

‘#Const Compile_Command5_Click = True

#If Compile_Command5_Click Or CompileAll_Form1 Then

 Form5.Load()

 Form5.Show()

 Close()

NOTES

Self-Instructional
Material 125

Lab: Visual Basic
Programming

#End If‘ Compile_Command5_Click

 End Sub

 Private Sub Command6_Click(ByVal sender As Object, ByVal
e As System.EventArgs) Handles Command6.Click

‘#Const Compile_Command6_Click = True

#If Compile_Command6_Click Or CompileAll_Form1 Then

 Form7.Load()

 Form7.Show()

 Close()

#End If‘ Compile_Command6_Click

 End Sub

 Private Sub Command7_Click() Handles Command7.Click

‘#Const Compile_Command7_Click = True

#If Compile_Command7_Click Or CompileAll_Form1 Then

 Application.Exit()

#End If‘ Compile_Command7_Click

 End Sub

 Private Sub Command8_Click() Handles Command8.Click

‘#Const Compile_Command8_Click = True

#If Compile_Command8_Click Or CompileAll_Form1 Then

 Form8.Load()

 Form8.Show()

 Close()

#End If‘ Compile_Command8_Click

 End Sub

 Private Sub Command9_Click(ByVal sender As Object, ByVal
e As System.EventArgs) Handles Command9.Click

‘#Const Compile_Command9_Click = True

#If Compile_Command9_Click Or CompileAll_Form1 Then

 Form14.Load()

 Form14.Show()

 Close()

#End If‘ Compile_Command9_Click

 End Sub

Lab: Visual Basic
Programming

NOTES

Self-Instructional
126 Material

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

‘#Const Compile_Form_Load = True

#If Compile_Form_Load Or CompileAll_Form1 Then

 Timer1.Interval = 50

#End If‘ Compile_Form_Load

 End Sub

 Private Sub Timer1_Tick(ByVal sender As Object, ByVal e
As System.EventArgs) Handles Timer1.Tick

‘#Const Compile_Timer1_Timer = True

#If Compile_Timer1_Timer Or CompileAll_Form1 Then

 l1.Top -= 60

 If l1.Top<=100 Then

 l1.Top = 13000

 End If

 L2.Top -= 60

 If L2.Top<=100 Then

 L2.Top = 13000

 End If

 L3.Top -= 60

 If L3.Top<=100 Then

 L3.Top = 13000

 End If

 L4.Top -= 60

 If L4.Top<=100 Then

 L4.Top = 13000

 End If

 L5.Top -= 60

 If L5.Top<=100 Then

 L5.Top = 13000

 End If

 L6.Top -= 60

 If L6.Top<=60 Then

 L6.Top = 13000

 End If

NOTES

Self-Instructional
Material 127

Lab: Visual Basic
Programming

 l7.Top -= 60

 If l7.Top<=60 Then

 l7.Top = 13000

 End If

 l8.Top -= 60

 If l8.Top<=60 Then

 l8.Top = 13000

 End If

 l9.Top -= 60

 If l9.Top<=60 Then

 l9.Top = 13000

 End If

#End If‘ Compile_Timer1_Timer

 End Sub

 Private Sub Timer2_Tick(ByVal sender As Object, ByVal e
As System.EventArgs) Handles Timer2.Tick

‘#Const Compile_Timer2_Timer = True

#If Compile_Timer2_Timer Or CompileAll_Form1 Then

Label4.ForeColor = ColorTranslator.FromOle
(QBColor(Rnd()*15))

Label5.ForeColor = ColorTranslator.FromOle
(QBColor(Rnd()*15))

#End If‘ Compile_Timer2_Timer

 End Sub

End Class

Lab: Visual Basic
Programming

NOTES

Self-Instructional
128 Material

File Menu:

Booking Menu:

Add Menu:

5. Electricity Bill Management

Main form:

Private Sub Cmdexit_Click()

End

End Sub

NOTES

Self-Instructional
Material 129

Lab: Visual Basic
Programming

Private Sub Cmd1_Click()

txtuser.Text = UCase(txtuser)

txtpass.Text = UCase(txtpass) ‘& LCase(txtpass)

If txtuser.Text = “ELECTRICITY” And txtpass = “KULKARNI”
Then

Main.Show

Me.Hide

Else

MsgBox (“Please try again”)

txtuser.SetFocus

End If

End Sub

Private Sub Cmd2_Click()

End

End Sub

Customer Form:

Private Sub Cmdadd_Click()

Adodc1.Refresh

Adodc1.Recordset.AddNew

End Sub

Private Sub cmdclear_Click()

Adodc1.Refresh

cmbgn.Text = “”

txtnm.Text = “”

txtad.Text = “”

cmbec.Text = “”

cmbct.Text = “”

Txtpn.Text = “”

cmbpro.Text = “”

Txtdob.Text = “”

End Sub

Private Sub cmdsv_Click()

If cmbgn.Text = “” Or txtnm.Text = “” Or cmbec.Text = “”
Or cmbpro.Text = “” Or Txtdob.Text = “” Then

Lab: Visual Basic
Programming

NOTES

Self-Instructional
130 Material

MsgBox “Please Fill Requireds Fields Then Save Your Record”

Else

Adodc1.Recordset.Fields(0) = cmbgn.Text

Adodc1.Recordset.Fields(1) = txtnm.Text

Adodc1.Recordset.Fields(2) = txtad.Text

Adodc1.Recordset.Fields(3) = cmbec.Text

Adodc1.Recordset.Fields(4) = cmbct.Text

Adodc1.Recordset.Fields(5) = Txtpn.Text

Adodc1.Recordset.Fields(6) = cmbpro.Text

Adodc1.Recordset.Fields(7) = Text1.Text ‘lbldt.Caption

Adodc1.Recordset.Fields(8) = Txtdob.Text

Adodc1.Recordset.Save

Adodc1.Refresh

MsgBox “Record Save Successfully”

cmbgn.Text = “”

txtnm.Text = “”

txtad.Text = “”

cmbec.Text = “”

cmbct.Text = “”

Txtpn.Text = “”

cmbpro.Text = “”

Txtdob.Text = “”

End If

End Sub

Private Sub Command5_Click()

Unload Me

End Sub

Private Sub Form_Load()

‘Adodc1.Refresh

cmbgn.Text = “”

txtnm.Text = “”

txtad.Text = “”

cmbec.Text = “”

cmbct.Text = “”

NOTES

Self-Instructional
Material 131

Lab: Visual Basic
Programming

Txtdob.Text = “”

Txtpn.Text = “”

cmbpro.Text = “”

Text1.Text = Date

‘FormatDateTime((DateTime.Day) & (“-”) & (DateTime.Month)
& (“-”) & (DateTime.Year))

‘d & “/” & m & “/” & y

‘lbldt.Caption = FormatDateTime(DateTime.Date, vbLongDate)

‘vbGeneralDate

‘DateTime.Date

End Sub

Bill:

Private Sub Cmbnm2_LostFocus()

‘On Error Resume Next

‘Adodc1.Refresh

‘While Not Adodc1.Recordset.EOF = True

‘If Adodc1.Recordset!Name = Cmbnm2.Text Then

‘txtadd.Text = Adodc1.Recordset!Add ‘ress

‘Txtex.Text = Adodc1.Recordset!Exchange

‘Txtpin.Text = Adodc1.Recordset!pincode

‘Else

‘’

‘’Exit Do

‘End If

‘Loop

Adodc1.Refresh

Lab: Visual Basic
Programming

NOTES

Self-Instructional
132 Material

Adodc2.Refresh

Do While Adodc1.Recordset.EOF = False

If Adodc1.Recordset!Name = Cmbnm2.Text Then

Txtadd.Text = Adodc1.Recordset!Add

Txtex.Text = Adodc1.Recordset!Exchange

Txtpin.Text = Adodc1.Recordset!pincode

Text1.Text = Adodc1.Recordset!plan

Exit Do

End If

‘End If

Adodc1.Recordset.MoveNext

‘Adodc2.Recordset.MoveNext

Loop

‘Do While Adodc2.Recordset.EOF = False

‘If Adodc2.Recordset!planname = Text1.Text Then

‘Txtmcc.Text = Adodc2.Recordset!MonthlyCharges

‘txtfc.Text = Adodc2.Recordset!free_calls

‘Exit Do

‘End If

‘Adodc2.Recordset.MoveNext

‘Loop

‘Adodc2.Recordset.MoveNext

Txtn2.Text = Cmbnm2.Text

Txtn3.Text = Txtadd.Text

Txtn4.Text = txtcust.Text

Txtn5.Text = Txttel.Text

Txtn6.Text = Txtex.Text

Txtn7.Text = Txtpin.Text

Txtdb.Text = Txtfmc.Text

Txtdb1.Text = txtfc.Text

‘Wend

End Sub

NOTES

Self-Instructional
Material 133

Lab: Visual Basic
Programming

Private Sub Cmdadd_Click()

Adodc3.Refresh

Adodc3.Recordset.MoveNext

Adodc3.Recordset.AddNew

Cmdadd.Visible = False

cmdsv.Visible = True

End Sub

Private Sub cmdcalc_Click()

‘Txtgmc.Text = Val(Txtcmr.Text) - Val(Txtomr.Text)

‘Txtncc.Text = Val(Txtgmc.Text) - Val(txtfc.Text)

‘If Txtncc.Text <= 0 Then

‘Txtncc.Text = “0”

‘Txtmcc.Text = Txtncc.Text

‘Else

‘Txtmcc.Text = Txtncc.Text

‘End If

End Sub

Private Sub cmdsv_Click()

‘Txtn2.Text = Cmbnm2.Text

‘Txtn3.Text = txtadd.Text

‘Txtn4.Text = txtcust.Text

‘Txtn5.Text = txttel.Text

‘Txtn6.Text = Txtex.Text

‘Txtn7.Text = txtpin.Text

‘Txtdb.Text = Txtfmc.Text

‘Txtdb1.Text = txtfc.Text

Adodc3.Recordset.Fields(0) = Txtn2.Text

Adodc3.Recordset.Fields(1) = Txtn4.Text

Adodc3.Recordset.Fields(2) = Txtn5.Text

Adodc3.Recordset.Fields(3) = Txtn6.Text

Adodc3.Recordset.Fields(4) = Txtn7.Text

Adodc3.Recordset.Fields(5) = Txtn3.Text

Adodc3.Recordset.Fields(6) = Txtomr.Text

Adodc3.Recordset.Fields(7) = Txtcmr.Text

Adodc3.Recordset.Fields(8) = Txtgmc.Text

Adodc3.Recordset.Fields(9) = txtfc.Text

Lab: Visual Basic
Programming

NOTES

Self-Instructional
134 Material

Adodc3.Recordset.Fields(10) = Txtncc.Text

Adodc3.Recordset.Fields(11) = Txtfmc.Text

Adodc3.Recordset.Fields(12) = Txtmcc.Text

‘Adodc3.Recordset.Fields(13) = Txtdb.Text

Adodc3.Recordset.Fields(14) = Txttx.Text

‘Adodc3.Recordset.Fields(15) = Txtdb1.Text

Adodc3.Recordset.Fields(18) = Txtapb.Text

Adodc3.Recordset.Fields(19) = Txtsfdp.Text

Adodc3.Recordset.Fields(20) = Txtapdd.Text

‘Adodc1.Recordset.Save

‘Adodc2.Recordset.Save

Adodc3.Recordset.Save

MsgBox “BILL SAVE Successfully”

Adodc3.Refresh

While Adodc3.Recordset.EOF = False

Combo1.AddItem (Adodc3.Recordset!Name)

Adodc3.Recordset.MoveNext

Wend

‘Val(Txtgmc.Text) = Val(Txtcmr.Text) - Val(Txtomr.Text)

‘End

End Sub

Private Sub cmdx_Click()

Unload Me

End Sub

Private Sub Combo1_LostFocus()

‘Text2.Text = Combo1.Text

‘Adodc3.Refresh

‘On Error Resume Next

‘If DataEnvironment1.con1.State = 1 Then
DataEnvironment1.con1.Open

‘DataEnvironment1.con1.Close

‘DataEnvironment1.con1.Open

‘DataEnvironment1.Bill_details (Text2.Text)

‘’DataReport3.Show

‘BillReport.Show

End Sub

NOTES

Self-Instructional
Material 135

Lab: Visual Basic
Programming

Private Sub Command1_Click()

Text2.Text = Combo1.Text

Adodc3.Refresh

On Error Resume Next

If DataEnvironment1.con1.State = 1 Then
DataEnvironment1.con1.Open

DataEnvironment1.con1.Close

DataEnvironment1.con1.Open

DataEnvironment1.Bill_details (Text2.Text)

‘DataReport3.Show

BillReport.Show

End Sub

Private Sub Form_Load()

While Adodc1.Recordset.EOF = False

Cmbnm2.AddItem (Adodc1.Recordset!Name)

Adodc1.Recordset.MoveNext

Wend

txtfc.Text = “”

Txtfmc.Text = “”

‘Label5.Caption = DateTime.Month(Date) & “/” &
DateTime.Year(Date)

Adodc3.Refresh

While Adodc3.Recordset.EOF = False

Combo1.AddItem (Adodc3.Recordset!Name)

Adodc3.Recordset.MoveNext

Wend

cmdsv.Visible = False

‘Val(Txtgmc.Text) = Val(Txtcmr.Text) - Val(Txtomr.Text)

End Sub

Private Sub Frame1_DragDrop(Source As Control, X As Single,
Y As Single)

‘BillReport.Show

End Sub

Private Sub Label5_Click()

End Sub

Private Sub Txtgmc_GotFocus()

Txtgmc.Text = Val(Txtcmr.Text) - Val(Txtomr.Text)

Lab: Visual Basic
Programming

NOTES

Self-Instructional
136 Material

Txtncc.Text = Val(Txtgmc.Text) - Val(txtfc.Text)

If Txtncc.Text <= 0 Then

Txtncc.Text = “0”

Txtmcc.Text = Txtncc.Text

Else

Txtmcc.Text = Txtncc.Text

End If

Txttx.Text = (Val(Txtfmc.Text) + Val(Txtmcc.Text)) * 0.1023

Txttx.Text = Round(Txttx.Text)

Txtapb.Text = Val(Txttx.Text) + Val(Txtfmc.Text) +
Val(Txtmcc.Text)

If Val(Txtapb.Text) > 0 Then

Txtsfdp.Text = “10”

Txtapdd.Text = Val(Txtapb.Text) + Val(Txtsfdp.Text)

Else

MsgBox “Wrong Bill Amount”

End If

End Sub

Private Sub Txtomr_GotFocus()

Do While Adodc2.Recordset.EOF = False

If Adodc2.Recordset!planname = Text1.Text Then

‘Txtmcc.Text = Adodc2.Recordset!MonthlyCharges

txtfc.Text = Adodc2.Recordset!free_calls

Exit Do

End If

Adodc2.Recordset.MoveNext

Loop

End Sub

NOTES

Self-Instructional
Material 137

Lab: Visual Basic
Programming

6. Bank Transaction System

Bank Details:

Public Class bankd

 Private Sub Label2_Click(sender As Object, e As EventArgs)

 End Sub

 Private Sub PictureBox1_Click(sender As Object, e As
EventArgs)

 End Sub

 Private Sub cls_Click(sender As Object, e As EventArgs)
Handles cls.Click

 Me.Close()

 End Sub

 Private Sub Button1_Click(sender As Object, e As
EventArgs) Handles Button1.Click

 home.managername.Text = TextBox1.Text

 home.brnamee.Text = TextBox2.Text

 home.Label6.Text = TextBox3.Text

 MsgBox(“Bank Details Updated”)

 End Sub

 Private Sub RectangleShape1_Click(sender As Object, e
As EventArgs) Handles RectangleShape1.Click

 End Sub

 Private Sub PictureBox1_Click_1(ByVal sender As
System.Object, ByVal e As System.EventArgs)

 End Sub

End Class

Lab: Visual Basic
Programming

NOTES

Self-Instructional
138 Material

Deposit:

Public Class Deposit

 Private Sub cls_Click(sender As Object, e As EventArgs)
Handles cls.Click

 Me.Hide()

 End Sub

 Private Sub Deposit_Load(sender As Object, e As EventArgs)
Handles MyBase.Load

 ‘TODO: This line of code loads data into the
‘BankaccountsDataSet.baccounts’ table. You can move, or remove
it, as needed.

 Me.BaccountsTableAdapter.Fill(Me.BankaccountsDataSet.baccounts)

 dat.Text = Date.Now.ToString(“MM/dd/yyyy”)

 Timer1.Start()

 End Sub

 Private Sub Label3_Click(sender As Object, e As EventArgs)
Handles Label3.Click

 End Sub

 Private Sub dat_Click(sender As Object, e As EventArgs)
Handles dat.Click

 End Sub

 Private Sub Button1_Click(sender As Object, e As
EventArgs) Handles Button1.Click

 Me.Close()

 End Sub

 Private Sub Timer1_Tick(sender As Object, e As EventArgs)
Handles Timer1.Tick

 clock.Text = TimeOfDay

 End Sub

 Private Sub Button2_Click(sender As Object, e As
EventArgs) Handles Button2.Click

 Dim con As New OleDb.OleDbConnection

 con.ConnectionString = “PROVIDER = Microsoft. Ace. OLEDB.
12.0; Data Source =F:\Sem.4\extra vs code\bankmanagementsystem\
bankmanagementsystem\project\ BankManageMentSystem\
BankManageMentSystem\bankaccounts.accdb”

NOTES

Self-Instructional
Material 139

Lab: Visual Basic
Programming

Dim SqlString As String = “update [baccounts] set [Balance]
= Balance+@TextBox2.Text where [Acc_Id] = @TextBox1.Text”

Using conn As New OleDb.OleDbConnection(con.
ConnectionString)

 Using cmd As New OleDb.OleDbCommand(SqlString, con)

 cmd.CommandType = CommandType.Text

 cmd.Parameters.AddWithValue(“column”, TextBox2.Text)

 cmd.Parameters.AddWithValue(“column”, TextBox1.Text)

 con.Open()

 MsgBox(“Amount Deposited Successfully”)

 cmd.ExecuteNonQuery()

 Me.DataGridView1.Refresh()

 TextBox2.Text = “”

 TextBox1.Text = “”

 End Using

 End Using

 End Sub

 Private Sub HomeToolStripMenuItem_Click(sender As Object,
e As EventArgs) Handles HomeToolStripMenuItem.Click

 home.Show()

 End Sub

 Private Sub AccountsToolStripMenuItem_Click(sender As
Object, e As EventArgs) Handles AccountsToolStripMenuItem.Click

 End Sub

 Private Sub AddAccountToolStripMenuItem_Click(sender As
Object, e As EventArgs) Handles AddAccountToolStripMenuItem.
Click

 addaccount.Show()

 End Sub

 Private Sub UpdateAccountToolStripMenuItem_Click(sender
As Object, e As EventArgs) Handles UpdateAccountToolStrip
MenuItem.Click

 updateaccount.Show()

 End Sub

 Private Sub DeleteAccountToolStripMenuItem_Click(sender
As Object, e As EventArgs) Handles DeleteAccount
ToolStripMenuItem.Click

Lab: Visual Basic
Programming

NOTES

Self-Instructional
140 Material

 deleteaccount.Show()

 End Sub

 Private Sub DepositToolStripMenuItem_Click(sender As
Object, e As EventArgs) Handles DepositToolStripMenuItem.Click

 Me.Show()

 End Sub

 Private Sub WithdrawToolStripMenuItem_Click(sender As
Object, e As EventArgs) Handles WithdrawToolStripMenuItem.Click

 Withdraw.Show()

 End Sub

Private Sub RegisterProductToolStripMenuItem_Click(sender
As Object, e As EventArgs) Handles RegisterProduct
ToolStripMenuItem.Click

 Register.Show()

 End Sub

 Private Sub CreditsToolStripMenuItem_Click(sender As
Object, e As EventArgs) Handles CreditsToolStripMenuItem.Click

 about.Show()

 End Sub

 Private Sub HelpToolStripMenuItem_Click(sender As Object,
e As EventArgs) Handles HelpToolStripMenuItem.Click

 Help.Show()

 End Sub

 Private Sub AboutToolStripMenuItem_Click(sender As
Object, e As EventArgs) Handles AboutToolStripMenuItem.Click

 End Sub

End Class

NOTES

Self-Instructional
Material 141

Lab: Visual Basic
Programming

Withdraw:

Public Class Withdraw

 Private Sub AddAccountToolStripMenuItem_Click(sender As
Object, e As EventArgs) Handles AddAccountToolS
tripMenuItem.Click

 End Sub

 Private Sub cls_Click(sender As Object, e As EventArgs)
Handles cls.Click

 Me.Hide()

 End Sub

 Private Sub Withdraw_Load(sender As Object, e As
EventArgs) Handles MyBase.Load

 ‘TODO: This line of code loads data into the
‘BankaccountsDataSet.baccounts’ table. You can move, or remove
it, as needed.

 Me.BaccountsTableAdapter.Fill(Me.BankaccountsDataSet.baccounts)

 dat.Text = Date.Now.ToString(“MM/dd/yyyy”)

 Timer1.Start()

 End Sub

 Private Sub dat_Click(sender As Object, e As EventArgs)
Handles dat.Click

 End Sub

 Private Sub Timer1_Tick(sender As Object, e As EventArgs)
Handles Timer1.Tick

 clock.Text = TimeOfDay

 End Sub

 Private Sub Button2_Click(sender As Object, e As
EventArgs) Handles Button2.Click

 Dim con As New OleDb.OleDbConnection

 con.ConnectionString = “PROVIDER = Microsoft.Ace.OLEDB.
12.0; Data Source =F:\Sem.4\extra vs code\bankmanagementsystem\
bankmanagementsystem\project\BankManageMentSystem
\BankManageMentSystem\ bankaccounts.accdb”

Dim SqlString As String = “update [baccounts] set [Balance]
= Balance-@TextBox2.Text where [Acc_Id] = @TextBox1.Text”

Using conn As New OleDb.OleDbConnection
(con.ConnectionString)

Lab: Visual Basic
Programming

NOTES

Self-Instructional
142 Material

 Using cmd As New OleDb.OleDbCommand(SqlString, con)

 cmd.CommandType = CommandType.Text

 cmd.Parameters.AddWithValue(“column”, TextBox2.Text)

 cmd.Parameters.AddWithValue(“column”, TextBox1.Text)

 con.Open()

 MsgBox(“Amount Withdrawn Successfully”)

 cmd.ExecuteNonQuery()

 Me.DataGridView1.Refresh()

 TextBox2.Text = “”

 TextBox1.Text = “”

 End Using

 End Using

 End Sub

End Class

7. Payroll Processing

Login:

Imports System.Data.OleDb

Public Class frmloginA

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

Dim con As New System.Data.OleDb.OleDbConnection(“Provider
= Microsoft.jet.OleDB.4.0;Data Source = “ & Application.
StartupPath & “\datastorage.mdb;”)

 Dim cmd As OleDbCommand = New OleDbCommand(_

 “SELECT * FROM logininfo WHERE Username = ‘“ & _

 TextBox1.Text & “‘ AND [Password] = ‘“ & txtPassword.Text
& “‘ “, con)

 con.Open()

 Dim sdr As OleDbDataReader = cmd.ExecuteReader()

NOTES

Self-Instructional
Material 143

Lab: Visual Basic
Programming

 If (sdr.Read() = True) Then

 MessageBox.Show(“You are Now Logged In”)

 frmMainA.Show()

 TextBox1.Focus()

 TextBox1.Clear()

 txtPassword.Clear()

 Me.Hide()

 Else

 MessageBox.Show(“Invalid Username or Password!”)

 End If

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

 If MsgBox(“Do you want to switch user?”, vbYesNo +
vbQuestion) = vbYes Then

 Me.Hide()

 TextBox1.Clear()

 txtPassword.Clear()

 Frmchoose.Show()

 End If

 End Sub

 Private Sub txtUsername_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs)

 End Sub

 Private Sub CheckBox1_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
CheckBox1.CheckedChanged

 If CheckBox1.Checked = True Then

 txtPassword.PasswordChar = “”

 Else

 txtPassword.PasswordChar = “•”

 End If

 End Sub

 Private Sub txtPassword_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs)

 End Sub

Lab: Visual Basic
Programming

NOTES

Self-Instructional
144 Material

 Private Sub log_Load(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles MyBase.Load

 End Sub

 Private Sub GroupBox1_Enter(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles GroupBox1.Enter

 End Sub

 Private Sub PictureBox1_Click_1(ByVal sender As
System.Object, ByVal e As System.EventArgs)

 End Sub

End Class

Form Main:

Imports System.IO

Public Class frmMainA

 Private Sub Timer1_Tick(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Timer1.Tick

 lblTime.Text = DateTime.Now.ToString(“hh:mm:ss tt”)

 lblDate.Text = DateTime.Now.ToString(“MMMM dd yyyy”)

 End Sub

 Private Sub frmmainuser_Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

 Label2.Text = frmloginA.TextBox1.Text

 Timer1.Start()

 End Sub

 Private Sub btnMaintenance_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnMaintenance.Click

 Try

 Dim fbd As New FolderBrowserDialog

NOTES

Self-Instructional
Material 145

Lab: Visual Basic
Programming

 If fbd.ShowDialog() = vbOK Then

 File.Copy(“GenerallPayroll.accdb”, fbd.SelectedPath &
“\GenerallPayroll.accdb”)

 MsgBox(“Done...”)

 End If

 Catch ex As Exception

 MsgBox(ex.Message)

 End Try

 End Sub

 Private Sub btnMini_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnMini.Click

 Me.WindowState = FormWindowState.Minimized

 End Sub

 Private Sub btnLogout_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnLogout.Click

 btnLogout.BackColor = Color.White

 btnLogout.ForeColor = Color.Black

 If MsgBox(“Do you want to switch user?”, vbYesNo +
vbQuestion) = vbYes Then

 Me.Hide()

 Frmchoose.Show()

 End If

 End Sub

 Private Sub NotePadToolStripMenuItem_Click(ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
NotePadToolStripMenuItem.Click

 Try

 System.Diagnostics.Process.Start(“Notepad.exe”)

 Catch ex As Exception

 MessageBox.Show(ex.Message, “Error”,
MessageBoxButtons.OK, MessageBoxIcon.Error)

 End Try

 End Sub

 Private Sub CalculatorToolStripMenuItem_Click(ByVal
sender As System.Object, ByVal e As System.EventArgs) Handles
CalculatorToolStripMenuItem.Click

Lab: Visual Basic
Programming

NOTES

Self-Instructional
146 Material

 Try

 System.Diagnostics.Process.Start(“Calc.exe”)

 Catch ex As Exception

 MessageBox.Show(ex.Message, “Error”,
MessageBoxButtons.OK, MessageBoxIcon.Error)

 End Try

 End Sub

 Private Sub SystemInfoToolStripMenuItem_Click(ByVal
sender As System.Object, ByVal e As System.EventArgs) Handles
SystemInfoToolStripMenuItem.Click

 End Sub

 Private Sub btnCataloging_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnCataloging.Click

 frmregister.Show()

 End Sub

 Private Sub btnCirculation_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnCirculation.Click

 frmpayslip.Show()

 End Sub

 Private Sub AddStaffToolStripMenuItem_Click(ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
AddStaffToolStripMenuItem.Click

 frmaddstaff.Show()

 End Sub

 Private Sub RemoveStaffToolStripMenuItem_Click(ByVal
sender As System.Object, ByVal e As System.EventArgs) Handles
RemoveStaffToolStripMenuItem.Click

 frmremovestaff.Show()

 End Sub

 Private Sub ToolStripMenuItem1_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
ToolStripMenuItem1.Click

 About.Show()

 End Sub

NOTES

Self-Instructional
Material 147

Lab: Visual Basic
Programming

 Private Sub EmployeeToolStripMenuItem_Click(ByVal sender
As System.Object, ByVal e As System.EventArgs)

 End Sub

 Private Sub SearchRecordsToolStripMenuItem_Click(ByVal
sender As System.Object, ByVal e As System.EventArgs)

 End Sub

End Class

Print Slip:

Public Class frmpayslip

Private Sub GenPayFinalBindingNavigatorSaveItem_
Click(ByVal sender As System.Object, ByVal e As System.
EventArgs)

 Me.Validate()

 Me.GenPayFinalBindingSource.EndEdit()

 Me.TableAdapterManager.UpdateAll(Me.GenerallPayrollDataSet)

 End Sub

 Private Sub frmpayslip_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

 ‘TODO: This line of code loads data into the
‘GenerallPayrollDataSet.GenPayFinal’ table. You can move, or
remove it, as needed.

Me.GenPayFinalTableAdapter.Fill(Me.GenerallPayrollDataSet.
GenPayFinal)

End Sub

 Private Sub FacultyUnionLabel_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)

 End Sub

Lab: Visual Basic
Programming

NOTES

Self-Instructional
148 Material

 Private Sub TuitionLabel_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)

 End Sub

 Private Sub Button5_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button5.Click

 Me.Validate()

 Me.GenPayFinalBindingSource.EndEdit()

 Me.TableAdapterManager.UpdateAll(Me.GenerallPayrollDataSet)

 MessageBox.Show(“Successfully Added”)

 End Sub

 Private Sub btnLogin_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs)

 End Sub

 Private Sub btnDeleteJHS_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnDeleteJHS.Click

 Try

 If PlantIDTextBox.Text = “” Then

 MessageBox.Show(“Please select employee id”, “Entry”,
MessageBoxButtons.OK, MessageBoxIcon.Warning)

 Exit Sub

 End If

 If PlantIDTextBox.Text.Count > 0 Then

 If MessageBox.Show(“Do you really want to delete the
record?” & vbCrLf & “You can not restore the record” & vbCrLf
& “It will delete record permanently” & vbCrLf & “related to
selected employee”, “Warning!!!”, MessageBoxButtons.YesNo,
MessageBoxIcon.Warning) = Windows.Forms.DialogResult.Yes Then

 GenPayFinalBindingSource.RemoveCurrent()

 Me.TableAdapterManager.UpdateAll(Me.GenerallPayrollDataSet)

 End If

 End If

 Catch ex As Exception

 MessageBox.Show(ex.Message, “Error”, MessageBoxButtons.

NOTES

Self-Instructional
Material 149

Lab: Visual Basic
Programming

OK, MessageBoxIcon.Error)

 End Try

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

 txtReceipt.Text = “”

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(vbTab + vbTab + vbTab + vbTab +
vbTab + vbTab & “PAY-SLIP” + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“Plantilla Number: “ + vbTab &
PlantIDTextBox.Text + vbTab + vbTab + vbTab + vbNewLine)

 txtReceipt.AppendText(“Employee Name: “ + vbTab &
EmployeeNameTextBox.Text + vbTab + vbTab + vbNewLine)

 txtReceipt.AppendText(“Number: “ + vbTab + vbTab &
NoTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“Basic Salary: “ + vbTab &
BasicTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“Pera: “ + vbTab + vbTab &
PERATextBox.Text + vbNewLine)

 txtReceipt.AppendText(“Gross Amount: “ + vbTab &
GrossAmountTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“= = = = = = = = = = = = = = = =
= =
= = = = = = = “ + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(vbTab + vbTab & “Deductions” +

Lab: Visual Basic
Programming

NOTES

Self-Instructional
150 Material

vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“W/ Tax: “ + vbTab + vbTab + vbTab
& WtaxTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“GSIS Premium: “ + vbTab + vbTab
& GSISPremiumTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“GSIS Salary Loan: “ + vbTab &
GSISSalaryLoanTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“GSIS EL: “ + vbTab + vbTab &
GSISELTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“GSIS EMRGL: “ + vbTab + vbTab &
GSISEMRGLTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“GSIS PL: “ + vbTab + vbTab &
GSISPLTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“Pag-Ibig Premium: “ + vbTab &
PagIbigPremTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“Pag-Ibig ML: “ + vbTab + vbTab &
PagIbigMLTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“Pag-Ibig 2: “ + vbTab + vbTab &
PagIbig2TextBox.Text + vbNewLine)

 txtReceipt.AppendText(“Phil Health Premium: “ + vbTab &
PhilHealthPremiunTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“LEAP: “ + vbTab + vbTab + vbTab
& LEAPTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“IGP: “ + vbTab + vbTab + vbTab &
IGPTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“Faculty Union: “ + vbTab + vbTab
& FacultyUnionTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“Refund Disallow: “ + vbTab &
RefundDisallowTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“Tuition: “ + vbTab + vbTab +
vbTab & TuitionTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“LBP Payment: “ + vbTab + vbTab &
LBPPaymentTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“City Savings: “ + vbTab + vbTab
& CitySavingsTextBox.Text + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“Total Deductions: “ + vbTab &
TotalDeductionTextBox.Text + vbTab + vbTab & “NET Amount: “ +
vbTab & NETAmountTextBox.Text + vbNewLine)

NOTES

Self-Instructional
Material 151

Lab: Visual Basic
Programming

 txtReceipt.AppendText(“= = = = = = = = = = = = = = = =
= =
= = = = = = = “ + vbNewLine)

 txtReceipt.AppendText(vbTab & “Due Date: “ + Today &
vbTab + vbTab + vbTab + vbTab + vbTab + vbTab & “Time: “ &
TimeOfDay + vbNewLine)

 txtReceipt.AppendText(“= = = = = = = = = = = = = = = =
= =
= = = = = = = “ + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(vbTab + “Recieve by:” + vbNewLine)

 txtReceipt.AppendText(vbTab + vbTab + vbTab +
“___________________” + vbNewLine)

 txtReceipt.AppendText(vbTab + vbTab + vbTab +
EmployeeNameTextBox.Text + vbNewLine)

 txtReceipt.AppendText(vbTab + vbTab + vbTab + “ Employee”
+ vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“” + vbNewLine)

 txtReceipt.AppendText(“= = = = = = = = = = = = = = = =
= =
= = = = = = = “ + vbNewLine)

 txtReceipt.AppendText(“ Need Help? Contact Us: 09096510899
“ + vbNewLine)

 txtReceipt.AppendText(“= = = = = = = = = = = = = = = =
= =
= = = = = = = “ + vbNewLine)

 txtReceipt.AppendText(vbTab + vbTab + vbTab +
PictureBox1.Text + vbNewLine)

 PrintPreviewDialog1.ShowDialog()

 End Sub

 Private Sub PrintDocument1_PrintPage(ByVal sender As
System.Object, ByVal e As System.Drawing.Printing.
PrintPageEventArgs) Handles PrintDocument1.PrintPage

Lab: Visual Basic
Programming

NOTES

Self-Instructional
152 Material

 e.Graphics.DrawString(txtReceipt.Text, Font,
Brushes.Black, 140, 140)

 e.Graphics.DrawImage(Me.PictureBox1.Image, 120, 130,
PictureBox1.Width - 15, PictureBox1.Height - 25)

 e.Graphics.DrawImage(Me.PictureBox2.Image, 300, 130,
PictureBox2.Width - 15, PictureBox2.Height - 25)

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

 TotalDeductionTextBox.Text = Val(WtaxTextBox.Text) +
Val(GSISPremiumTextBox.Text) + Val(GSISSalaryLoanTextBox.Text)
+ Val(GSISELTextBox.Text) + Val(GSISEMRGLTextBox.Text) +
Val(GSISPLTextBox.Text) + Val(PagIbigPremTextBox.Text) +
Val(PagIbigMLTextBox.Text) + Val(PagIbig2TextBox.Text) +
Val(PhilHealthPremiunTextBox.Text) + Val(LEAPTextBox.Text) +
Val(IGPTextBox.Text) + Val(FacultyUnionTextBox.Text) +
Val(RefundDisallowTextBox.Text) + Val(TuitionTextBox.Text) +
Val(LBPPaymentTextBox.Text) + Val(CitySavingsTextBox.Text)

 GrossAmountTextBox.Text = Val(BasicTextBox.Text) +
Val(PERATextBox.Text)

 NETAmountTextBox.Text = Val(GrossAmountTextBox.Text) -
Val(TotalDeductionTextBox.Text)

NETAmountTextBox.Text = FormatCurrency(NETAmountTextBox.
Text)

TotalDeductionTextBox.Text = FormatCurrency(Total
DeductionTextBox.Text)

GrossAmountTextBox.Text = FormatCurrency(Gross
AmountTextBox.Text)

 MessageBox.Show(“Successfully Computed”)

 End Sub

 Private Sub Button9_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button9.Click

 Me.TableAdapterManager.UpdateAll(Me.GenerallPayrollDataSet)

 Me.Close()

 End Sub

NOTES

Self-Instructional
Material 153

Lab: Visual Basic
Programming

 Private Sub Button8_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button8.Click

 GenPayFinalBindingSource.MovePrevious()

 End Sub

 Private Sub Button7_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button7.Click

 GenPayFinalBindingSource.MoveNext()

 End Sub

 Private Sub TextBox14_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TextBox14.TextChanged

 Me.GenPayFinalBindingSource.Filter = “PlantID LIKE ‘“ &
TextBox14.Text & “%’”

 End Sub

End Class

8. Personal Information System

Main:

Imports System.Data.OleDb

Public Class frmmain

 Dim Oledr As OleDbDataReader

 Dim Item As New ListViewItem()

 Dim ItemSearch As New ListViewItem

 Private Sub frmmain_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

 Call ListStudentColumns(lststudent)

Lab: Visual Basic
Programming

NOTES

Self-Instructional
154 Material

 Call openconnection()

 Call Initialized()

 Call LoadListView()

 Call closeconnection()

 End Sub

 Public Sub LoadListView()

 lststudent.Items.Clear()

 Call Initialized()

 Oledr = OleDa.SelectCommand.ExecuteReader()

 Do While Oledr.Read()

Item = lststudent.Items.Add(Oledr(“studentno”).ToString())

 Item.SubItems.Add(Oledr(“firstname”).ToString())

 Item.SubItems.Add(Oledr(“lastname”).ToString())

 Item.SubItems.Add(Oledr(“course”).ToString())

 Loop

 Oledr.Close()

 End Sub

 Private Sub btnAdd_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnAdd.Click

 frmadd.ShowDialog()

 End Sub

 Private Function UpdateValidateStudent() As Boolean

 If lststudent.Items.Count = 0 Then

 MsgBox(“No records.”, MsgBoxStyle.Information, “No
Records”)

 Return True

 Exit Function

 End If

 If lststudent.SelectedItems.Count > 1 Then

 MsgBox(“Double click the record”,
MsgBoxStyle.Information)

 lststudent.SelectedItems.Clear()

 Return True

 Exit Function

 End If

NOTES

Self-Instructional
Material 155

Lab: Visual Basic
Programming

 If lststudent.SelectedItems.Count = 0 Then

 MsgBox(“Please choose the record you want to edit”,
MsgBoxStyle.Information)

 Return True

 Exit Function

 End If

 End Function

 Private Sub btnEdit_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnEdit.Click

 If UpdateValidateStudent() = True Then

 Return

 End If

 frmedit.ShowDialog()

 End Sub

 Private Function DeleteStudentValidate() As Boolean

 If lststudent.Items.Count = 0 Then

 MsgBox(“No Records to delete”)

 Return True

 Exit Function

 End If

 If lststudent.SelectedItems.Count = 0 Then

 MsgBox(“Please choose the record you want to delete.”)

 Return True

 Exit Function

 End If

 End Function

 Private Sub btnDelete_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnDelete.Click

 If DeleteStudentValidate() = True Then

 Return

 End If

 If MsgBox(“Do you really want to delete this record?”,
MsgBoxStyle.YesNo + MsgBoxStyle.Question, “Delete?”) =
MsgBoxResult.No Then

Lab: Visual Basic
Programming

NOTES

Self-Instructional
156 Material

 MsgBox(“Delete Cancelled.”, MsgBoxStyle.Information)

 lststudent.SelectedItems.Clear()

 Exit Sub

 End If

 For Each Item As ListViewItem In lststudent.SelectedItems

 Item.Remove()

 OleDa.DeleteCommand = New OleDbCommand()

 Call openconnection()

 OleDa.DeleteCommand.CommandText = “DELETE FROM tblstudent
WHERE studentno = @studentno”

 OleDa.DeleteCommand.Connection = OleCn

 OleDa.DeleteCommand.Parameters.Add(“@studentno”,
OleDbType.VarChar, 50, “studentno”).Value =
Item.Text.ToString()

 OleDa.DeleteCommand.ExecuteNonQuery()

 Call LoadListView()

 Call closeconnection()

 Next

 MsgBox(“Record Deleted”)

 lststudent.SelectedItems.Clear()

 End Sub

 Private Sub btnRefresh_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnRefresh.Click

 Call openconnection()

 Call Initialized()

 Call LoadListView()

 Call closeconnection()

 txtSearch.Clear()

 MsgBox(“Total Records = “ & lststudent.Items.Count,
MsgBoxStyle.Information, “Record”)

 End Sub

 Private Sub SearchStudent()

 lststudent.Items.Clear()

 Call Initialized()

 OleDa.SelectCommand.CommandText = “SELECT * FROM
tblstudent WHERE studentno Like ‘%%” & txtSearch.Text.
Trim.ToString() & “%%’”

NOTES

Self-Instructional
Material 157

Lab: Visual Basic
Programming

 OleDa.SelectCommand.Connection = OleCn

 Oledr = OleDa.SelectCommand.ExecuteReader()

 Do While Oledr.Read()

ItemSearch = lststudent.Items.Add(Oledr(“studentno”).
ToString())

 ItemSearch.SubItems.Add(Oledr(“firstname”).ToString())

 ItemSearch.SubItems.Add(Oledr(“lastname”).ToString())

 ItemSearch.SubItems.Add(Oledr(“course”).ToString())

 Loop

 Oledr.Close()

 End Sub

 Private Sub txtSearch_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
txtSearch.TextChanged

 OleDa.SelectCommand = New OleDbCommand()

 OleDa.SelectCommand.CommandText = “SELECT * FROM
tblstudent WHERE studentno Like ‘%%’”

 OleDa.SelectCommand.Connection = OleCn

 Call openconnection()

 OleDa.SelectCommand.ExecuteNonQuery()

 Call SearchStudent()

 Call closeconnection()

 End Sub

End Class

Lab: Visual Basic
Programming

NOTES

Self-Instructional
158 Material

Add Information:

Imports System.Data.OleDb

Public Class frmadd

 Private Sub frmadd_FormClosing(ByVal sender As Object,
ByVal e As System.Windows.Forms.FormClosingEventArgs) Handles
Me.FormClosing

 Call cleartext()

 txtsn.Focus()

 frmmain.lststudent.SelectedItems.Clear()

 End Sub

 Private Sub frmadd_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

 End Sub

 Private Sub cleartext()

 Me.txtsn.Clear()

 Me.txtfn.Clear()

 Me.txtln.Clear()

 End Sub

 Private Sub btnCancel_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnCancel.Click

 Me.Close()

 End Sub

 Private Sub btnSave_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnSave.Click

 If txtsn.Text = “” Or txtfn.Text = “” Or cmbcourse.Text
= “” Then

 MsgBox(“Please don’t leave blank textfields”,
MsgBoxStyle.Information, “Missing data”)

 Exit Sub

 End If

 Try

NOTES

Self-Instructional
Material 159

Lab: Visual Basic
Programming

 Call openconnection()

 OleDa.InsertCommand = New OleDbCommand()

 OleDa.InsertCommand.CommandText = “INSERT INTO tblstudent
(studentno, firstname, lastname, course)” & _

 “VALUES (@studentno , @firstname, @lastname, @course)”

 OleDa.InsertCommand.Connection = OleCn

 OleDa.InsertCommand.Parameters.Add(“@studentno”,
OleDbType.VarWChar, 50, “studentno”).Value = txtsn.Text

 OleDa.InsertCommand.Parameters.Add(“@firstname”,
OleDbType.VarWChar, 50, “firstname”).Value = txtfn.Text

 OleDa.InsertCommand.Parameters.Add(“@lastname”,
OleDbType.VarWChar, 50, “lastname”).Value = txtln.Text

 OleDa.InsertCommand.Parameters.Add(“@course”,
OleDbType.VarWChar, 50, “course”).Value = cmbcourse.Text

 OleDa.InsertCommand.ExecuteNonQuery()

 Call frmmain.LoadListView()

 Call closeconnection()

 MsgBox(“Records Saved”, MsgBoxStyle.Information, “Saved”)

 Me.Close()

 Catch ex As Exception

 MsgBox(“Cannot Save this record, Existing Student Number”,
MsgBoxStyle.Information, “Error”)

 Call closeconnection()

 txtsn.Focus()

 txtsn.SelectAll()

 End Try

 End Sub

End Class

Delete Record:

Lab: Visual Basic
Programming

NOTES

Self-Instructional
160 Material

Edit Record:

Imports System.Data.OleDb

Public Class frmedit

 Private Sub frmedit_FormClosing(ByVal sender As Object,
ByVal e As System.Windows.Forms.FormClosingEventArgs) Handles
Me.FormClosing

 Call cleartext()

 txtsn.Focus()

 frmmain.lststudent.SelectedItems.Clear()

 End Sub

 Private Sub frmedit_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

 Call openconnection()

 Call Initialized()

txtsn.Text = CStr(frmmain.lststudent.SelectedItems(0).
Text)

 Call Fill()

 Call closeconnection()

 End Sub

 Private Sub cleartext()

 Me.txtsn.Clear()

 Me.txtfn.Clear()

 Me.txtln.Clear()

 End Sub

 Private Sub Fill()

 Dim OleDr As OleDbDataReader

 OleDa.SelectCommand = New OleDbCommand()

 OleDa.SelectCommand.CommandText = “SELECT * From
tblstudent WHERE studentno = @studentno”

 OleDa.SelectCommand.Parameters.Add(“@studentno”,
OleDbType.VarWChar, 50, “studentno”).Value = txtsn.Text

 OleDa.SelectCommand.Connection = OleCn

 OleDr = OleDa.SelectCommand.ExecuteReader()

NOTES

Self-Instructional
Material 161

Lab: Visual Basic
Programming

 If OleDr.HasRows() Then

 OleDr.Read()

 txtsn.Text = OleDr(“studentno”).ToString()

 txtfn.Text = OleDr(“firstname”).ToString()

 txtln.Text = OleDr(“lastname”).ToString()

 cmbcourse.Text = OleDr(“course”).ToString()

 End If

 OleDr.Close()

 End Sub

 Private Sub btnCancel_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnCancel.Click

 Me.Close()

 End Sub

 Private Sub btnSave_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnSave.Click

 If txtsn.Text = “” Or txtfn.Text = “” Or txtln.Text = “”
Or cmbcourse.Text = “” Then

 MsgBox(“Dont leave blank textfields”)

 Exit Sub

 End If

 Try

 Call openconnection()

 OleDa.UpdateCommand = New OleDbCommand()

 OleDa.UpdateCommand.CommandText = “UPDATE tblstudent SET
studentno = @studentno, firstname = @firstname, lastname =
@lastname, course = @course WHERE studentno = ?”

 OleDa.UpdateCommand.Connection = OleCn

 OleDa.UpdateCommand.Parameters.Add(“@studentno”,
OleDbType.VarWChar, 50, “studentno”).Value = txtsn.Text

 OleDa.UpdateCommand.Parameters.Add(“@firstname”,
OleDbType.VarWChar, 50, “firstname”).Value = txtfn.Text

 OleDa.UpdateCommand.Parameters.Add(“@lastName”,
OleDbType.VarWChar, 50, “lastName”).Value = txtln.Text

Lab: Visual Basic
Programming

NOTES

Self-Instructional
162 Material

 OleDa.UpdateCommand.Parameters.Add(“@Course”,
OleDbType.VarWChar, 50, “Course”).Value = cmbcourse.Text

 OleDa.UpdateCommand.Parameters.Add(New
S y s t e m . D a t a . O l e D b . O l e D b P a r a m e t e r (“ E m p I D ” ,
System.Data.OleDb.OleDbType.VarWChar, 50, _

 System.Data.ParameterDirection.Input, False, CType(0,
Byte), CType(0, Byte), “studentno”, _

 System.Data.DataRowVersion.Original, Nothing)).Value =
frmmain.lststudent.SelectedItems(0).Text

 OleDa.UpdateCommand.ExecuteNonQuery()

 Call frmmain.LoadListView()

 Call closeconnection()

 MsgBox(“Records Updated”)

 Me.Close()

 Catch ex As Exception

 MsgBox(“Cannot Update StudentNo is present”)

 Call closeconnection()

 txtsn.Focus()

 txtsn.SelectAll()

 End Try

 End Sub

End Class

9. Question Database and Conducting Quiz

Register:

Public Class Form2

NOTES

Self-Instructional
Material 163

Lab: Visual Basic
Programming

 Private Sub Form2_Load(sender As Object, e As EventArgs)
Handles MyBase.Load

 End Sub

 Private Sub LinkLabel1_LinkClicked(sender As Object, e
As LinkLabelLinkClickedEventArgs)

 SIGN_IN.Show()

 Me.Close()

 End Sub

 Private Sub Button1_Click(sender As Object, e As
EventArgs)

 Home.Show()

 Me.Close()

 End Sub

 Private Sub Button2_Click(sender As Object, e As
EventArgs)

 End Sub

 Private Sub GroupBox1_Enter(sender As Object, e As
EventArgs)

 End Sub

 Private Sub Button3_Click(sender As Object, e As
EventArgs)

 quest6.Show()

 End Sub

 Private Sub Button1_Click_1(sender As Object, e As
EventArgs) Handles Button1.Click

 My.Settings.Username = username1.Text

 My.Settings.Password = password1.Text

 My.Settings.Save()

 MsgBox(“Your Account Has Been Created”)

 SIGN_IN.Show()

Lab: Visual Basic
Programming

NOTES

Self-Instructional
164 Material

 Me.Close()

 End Sub

 Private Sub LinkLabel1_LinkClicked_1(sender As Object,
e As LinkLabelLinkClickedEventArgs) Handles
LinkLabel1.LinkClicked

 SIGN_IN.Show()

 Me.Close()

 End Sub

 Private Sub Button2_Click_1(sender As Object, e As
EventArgs) Handles Button2.Click

 Form1.Show()

 End Sub

 Private Sub CheckBox1_CheckedChanged(sender As Object,
e As EventArgs) Handles CheckBox1.CheckedChanged

 If CheckBox1.Checked Then

 password1.UseSystemPasswordChar = False

 Else

 password1.UseSystemPasswordChar = True

 End If

 End Sub

End Class

NOTES

Self-Instructional
Material 165

Lab: Visual Basic
Programming

Sign In:

Public Class SIGN_IN

 Private Sub Button1_Click(sender As Object, e As
EventArgs) Handles Button1.Click

 If username2.Text = My.Settings.Username And

 password2.Text = My.Settings.Password = True Then

 Home.Show()

 Me.Close()

 Else

 MsgBox(“Incorrect Username Or Password”)

 username2.Clear()

 password2.Clear()

 End If

 End Sub

 Private Sub Button2_Click(sender As Object, e As
EventArgs) Handles Button2.Click

 Form1.Show()

 Me.Close()

 End Sub

 Private Sub Button3_Click(sender As Object, e As
EventArgs)

 End Sub

 Private Sub SIGN_IN_Load(sender As Object, e As EventArgs)
Handles MyBase.Load

 End Sub

 Private Sub CheckBox1_CheckedChanged(sender As Object,
e As EventArgs) Handles CheckBox1.CheckedChanged

 If CheckBox1.Checked Then

 password2.UseSystemPasswordChar = False

 Else

Lab: Visual Basic
Programming

NOTES

Self-Instructional
166 Material

 password2.UseSystemPasswordChar = True

 End If

 End Sub

End Class

Question:

Public Class quest2

 Private Sub Button2_Click(sender As Object, e As
EventArgs) Handles Button2.Click

 Button2.Invalidate()

 If RadioButton3.Checked Then

 MsgBox(“You are correct”)

 quest8.LBLRIGHT.Text = quest8.LBLRIGHT.Text + 1

 Else

 MsgBox(“You are wrong”)

 quest8.LBLWRONG.Text = quest8.LBLWRONG.Text + 1

 End If

 Dim quest6 As New quest2

 Dim quest2 As New quest4

 quest4.Show()

 Me.Hide()

 End Sub

 Private Sub Label2_Click(sender As Object, e As EventArgs)
Handles Label2.Click

 End Sub

NOTES

Self-Instructional
Material 167

Lab: Visual Basic
Programming

 Private Sub RadioButton4_CheckedChanged(sender As Object,
e As EventArgs) Handles RadioButton4.CheckedChanged

 End Sub

 Private Sub RadioButton3_CheckedChanged(sender As Object,
e As EventArgs) Handles RadioButton3.CheckedChanged

 End Sub

End Class

10. Personal Diary

Main:

Class clsEntry

 Public Property dtDateOfentry As DateTime

 Public Property strContent As String

 Public Sub New(ByVal dtDate As DateTime, _

 ByVal strText As String)

 dtDateOfentry = dtDate

 strContent = strText

 End Sub

 Public Overrides Function ToString() As String

 Return dtDateOfentry & “ “ & strContent

 End Function

 End Class

Lab: Visual Basic
Programming

NOTES

Self-Instructional
168 Material

Module Module1

 Sub Main(ByVal args As String())

 Dim objDiary As clsDiary = New clsDiary()

 Dim cSelection As Char = “0”c

 While cSelection <> “4”c

 objDiary.Welcome()

 Console.WriteLine()

 Console.WriteLine(“MAIN MENU”)

 Console.WriteLine(“1 – ADD RECORD”)

 Console.WriteLine(“2 – VIEW RECORD”)

 Console.WriteLine(“3 – EDIT RECORD”)

 Console.WriteLine(“4 – DELETE RECORD”)

 Console.WriteLine(“5 – EDIT PASSWORD”)

 Console.WriteLine(“6 – EXIT”)

Console.WriteLine(“ENTER YOUR CHOICE”)

 cSelection = Console.ReadKey().KeyChar

 Console.WriteLine()

 Select Case cSelection

 Case “1”c

 objDiary.Add()

 Case “2”c

 objDiary.View()

 Case “3”c

 objDiary.Edit()

Case “4”c

 objDiary.Delete()

Case “5”c

 objDiary.Edit()

 Case “6”c

 Console.WriteLine(“Press any key to exit.”)

 Case Else

 Console.WriteLine(“Error.”)

NOTES

Self-Instructional
Material 169

Lab: Visual Basic
Programming

 End Select

 Console.ReadKey()

 End While

 End Sub

 End Module

Add/Delete or Search Items:

Public Sub Add(ByVal dtDate As DateTime, ByVal strText _

 As String)

 lstEntries.Add(New clsEntry(dtDate, strText))

 End Sub

 Public Sub Delete(ByVal dtDate As DateTime)

 Dim lstResults As List(Of clsEntry) = Find(dtDate, True)

 For Each Entry As clsEntry In lstResults

 lstEntries.Remove(Entry)

 Next

 End Sub

Public Function Find(ByVal dtDate As DateTime, ByVal
blnTime _

 As Boolean) As List(Of clsEntry)

 Dim lstResults As List(Of clsEntry) = New List(Of
clsEntry)()

 For Each Entry As clsEntry In lstEntries

 If ((blnTime) AndAlso (Entry.dtDateOfentry = _

 dtDate)) OrElse ((Not blnTime) AndAlso _

 (Entry.dtDateOfentry.Date = dtDate.Date))

 Then lstResults.Add(Entry)

Lab: Visual Basic
Programming

NOTES

Self-Instructional
170 Material

 Next

 Return lstResults

 End Function

Class clsDiary

 Private dbData As clsDatabase

 Public Sub New()

 dbData = New clsDatabase()

 End Sub

 Private Function GetDate() As DateTime

 Dim dtDate As DateTime

 While Not DateTime.TryParse(Console.ReadLine(), dtDate)

 Console.WriteLine(“Error. Try again:”)

 End While

 Return dtDate

 End Function

 Public Sub Print(ByVal dtDay As DateTime)

 Dim lstResults As List(Of clsEntry) = dbData.Find(dtDay,
_

 False)

 For Each Entry As clsEntry In lstResults

 Console.WriteLine(Entry)

 Next

 End Sub

 Public Sub Add()

 Dim dtDate As DateTime = GetDate()

 Console.WriteLine(“Enter the entry text:”)

 Dim strText As String = Console.ReadLine()

 dbData.Add(dtDate, strText)

 End Sub

NOTES

Self-Instructional
Material 171

Lab: Visual Basic
Programming

 Public Sub Search()

 Dim dtDate As DateTime = GetDate()

 Dim lstResults As List(Of clsEntry) = dbData.Find(dtDate,
_ False)

 If lstResults.Count() > 0 Then

 Console.WriteLine(“Found:”)

 For Each Entry As clsEntry In lstResults

 Console.WriteLine(Entry)

 Next

 Else

 Console.WriteLine(“Nothing found.”)

 End If

 End Sub

 Public Sub Delete()

 Dim dtDate As DateTime = GetDate()

 dbData.Delete(dtDate)

 End Sub

 Public Sub Welcome()

 Console.Clear()

 Console.WriteLine(“ENTER DATE OF YOUR RECORD: [yyyy-mm-
dd]:”, DateTime.Now))

 Console.WriteLine(“ENTER TIME:”)

Console.WriteLine(“ENTER NAME:”)

Console.WriteLine(“ENTER PLACE:”)

Console.WriteLine(“ENTER DURATION:”)

Console.WriteLine(“NOTE:”)

 Console.WriteLine(“ADD ANOTHER RECORD…<Y/N>”

 Print(DateTime.Today)

 Console.WriteLine()

 Print(DateTime.Now.AddDays(1))

 Console.WriteLine()

 End Sub

 End Class

Lab: Visual Basic
Programming

NOTES

Self-Instructional
172 Material

	Prelims.pdf
	Block.pdf

